{"title":"Can the presence of an author photograph and biography have an impact on article citations? The case of chemistry and chemical engineering","authors":"T. Dehdarirad","doi":"10.1162/qss_a_00219","DOIUrl":"https://doi.org/10.1162/qss_a_00219","url":null,"abstract":"Abstract The aim of this study was to investigate whether the presence of an author photograph and biography in scientific articles could have an impact on article citations. The impact of a photograph and biography, in combination with certain author characteristics (i.e., gender, affiliation country (measured as whether the author was affiliated with a high-income country or not), and scientific impact (measured as whether the author was a high-impact author or not)), was also examined, while controlling for several covariates. This study focused on a sample of articles published in the time span of 2016–2018 in chemistry and chemical engineering journals by Elsevier. The articles were downloaded from Scopus. The analysis was done using random effects within-between model analyses. Within authors, the results showed no significant impact of author photograph and biography on citations. Different patterns were found for visibility of articles when the presence of an author photograph and biography was combined with author characteristics. While being affiliated to a high-income country and being a high-impact author had a positive impact on citations, gender (female) had a negative impact. For gender, there was a small citation disadvantage of 5% for female authors when they provided a photograph and biography.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"1024-1039"},"PeriodicalIF":6.4,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44068143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving overlay maps of science: Combining overview and detail","authors":"Peter Sjögårde","doi":"10.1162/qss_a_00216","DOIUrl":"https://doi.org/10.1162/qss_a_00216","url":null,"abstract":"Abstract Overlay maps of science are global base maps over which subsets of publications can be projected. Such maps can be used to monitor, explore, and study research through its publication output. Most maps of science, including overlay maps, are flat in the sense that they visualize research fields at one single level. Such maps generally fail to provide both overview and detail about the research being analyzed. The aim of this study is to improve overlay maps of science to provide both features in a single visualization. I created a map based on a hierarchical classification of publications, including broad disciplines for overview and more granular levels to incorporate detailed information. The classification was obtained by clustering articles in a citation network of about 17 million publication records in PubMed from 1995 onwards. The map emphasizes the hierarchical structure of the classification by visualizing both disciplines and the underlying specialties. To show how the visualization methodology can help getting both an overview of research and detailed information about its topical structure, I studied two cases: coronavirus/Covid-19 research and the university alliance called Stockholm Trio.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"1097-1118"},"PeriodicalIF":6.4,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42402120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Know thy tools! Limits of popular algorithms used for topic reconstruction","authors":"Matthias Held","doi":"10.1162/qss_a_00217","DOIUrl":"https://doi.org/10.1162/qss_a_00217","url":null,"abstract":"Abstract To reconstruct topics in bibliometric networks, one must use algorithms. Specifically, researchers often apply algorithms from the class of network community detection algorithms (such as the Louvain algorithm) that are general-purpose algorithms not intentionally programmed for a bibliometric task. Each algorithm has specific properties “inscribed,” which distinguish it from the others. It can thus be assumed that different algorithms are more or less suitable for a given bibliometric task. However, the suitability of a specific algorithm when it is applied for topic reconstruction is rarely reflected upon. Why choose this algorithm and not another? In this study, I assess the suitability of four community detection algorithms for topic reconstruction, by first deriving the properties of the phenomenon to be reconstructed—topics—and comparing if these match with the properties of the algorithms. The results suggest that the previous use of these algorithms for bibliometric purposes cannot be justified by their specific suitability for this task.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"1054-1078"},"PeriodicalIF":6.4,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42924484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Researchers and their data: A study based on the use of the word data in scholarly articles","authors":"Frédérique Bordignon, M. Maisonobe","doi":"10.1162/qss_a_00220","DOIUrl":"https://doi.org/10.1162/qss_a_00220","url":null,"abstract":"Abstract Data is one of the most used terms in scientific vocabulary. This article focuses on the relationship between data and research by analyzing the contexts of occurrence of the word data in a corpus of 72,471 research articles (1980–2012) from two distinct fields (Social sciences, Physical sciences). The aim is to shed light on the issues raised by research on data, namely the difficulty of defining what is considered as data, the transformations that data undergo during the research process, and how they gain value for researchers who hold them. Relying on the distribution of occurrences throughout the texts and over time, it demonstrates that the word data mostly occurs at the beginning and end of research articles. Adjectives and verbs accompanying the noun data turn out to be even more important than data itself in specifying data. The increase in the use of possessive pronouns at the end of the articles reveals that authors tend to claim ownership of their data at the very end of the research process. Our research demonstrates that even if data-handling operations are increasingly frequent, they are still described with imprecise verbs that do not reflect the complexity of these transformations.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"1156-1178"},"PeriodicalIF":6.4,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41655642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Nguyen, Markus Luczak-Rösch, J. Dinneen, V. Larivière
{"title":"Assessing the quality of bibliographic data sources for measuring international research collaboration","authors":"B. Nguyen, Markus Luczak-Rösch, J. Dinneen, V. Larivière","doi":"10.1162/qss_a_00211","DOIUrl":"https://doi.org/10.1162/qss_a_00211","url":null,"abstract":"Abstract Measuring international research collaboration (IRC) is essential to various research assessment tasks but the effect of various measurement decisions, including which data sources to use, has not been thoroughly studied. To better understand the effect of data source choice on IRC measurement, we design and implement a data quality assessment framework specifically for bibliographic data by reviewing and selecting available dimensions and designing appropriate computable metrics, and then validate the framework by applying it to four popular sources of bibliographic data: Microsoft Academic Graph, Web of Science (WoS), Dimensions, and the ACM Digital Library. Successful validation of the framework suggests it is consistent with the popular conceptual framework of information quality proposed by Wang and Strong (1996) and adequately identifies the differences in quality in the sources examined. Application of the framework reveals that WoS has the highest overall quality among the sets considered; and that the differences in quality can be explained primarily by how the data sources are organized. Our study comprises a methodological contribution that enables researchers to apply this IRC measurement tool in their studies and makes an empirical contribution by further characterizing four popular sources of bibliographic data and their impact on IRC measurement.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"529-559"},"PeriodicalIF":6.4,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48703990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How reliable are unsupervised author disambiguation algorithms in the assessment of research organization performance?","authors":"G. Abramo, Ciriaco Andrea D’Angelo","doi":"10.1162/qss_a_00236","DOIUrl":"https://doi.org/10.1162/qss_a_00236","url":null,"abstract":"Abstract Assessing the performance of universities by output to input indicators requires knowledge of the individual researchers working within them. Although in Italy the Ministry of University and Research updates a database of university professors, in all those countries where such databases are not available, measuring research performance is a formidable task. One possibility is to trace the research personnel of institutions indirectly through their publications, using bibliographic repertories together with author names disambiguation algorithms. This work evaluates the goodness-of-fit of the Caron and van Eck, CvE unsupervised algorithm by comparing the research performance of Italian universities resulting from its application for the derivation of the universities’ research staff, with that resulting from the supervised algorithm of D’Angelo, Giuffrida, and Abramo (2011), which avails of input data. Results show that the CvE algorithm overestimates the size of the research staff of organizations by 56%. Nonetheless, the performance scores and ranks recorded in the two compared modes show a significant and high correlation. Still, nine out of 69 universities show rank deviations of two quartiles. Measuring the extent of distortions inherent in any evaluation exercises using unsupervised algorithms, can inform policymakers’ decisions on building national research staff databases, instead of settling for the unsupervised approaches.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"4 1","pages":"144-166"},"PeriodicalIF":6.4,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45627516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recategorising research: Mapping from FoR 2008 to FoR 2020 in Dimensions","authors":"Simon Porter, Daniel W. Hook","doi":"10.1162/qss_a_00244","DOIUrl":"https://doi.org/10.1162/qss_a_00244","url":null,"abstract":"Abstract In 2020 the Australia New Zealand Standard Research Classification Fields of Research Codes (ANZSRC FoR codes) were updated by their owners. This has led the sector to need to update their systems of reference and has caused suppliers working in the research information sphere to need to update both systems and data. This paper focuses on the approach developed by Digital Science’s Dimensions team to the creation of an improved machine-learning training set, and the mapping of that set from FoR 2008 codes to FoR 2020 codes so that the Dimensions classification approach for the ANZSRC codes could be improved and updated.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"4 1","pages":"127-143"},"PeriodicalIF":6.4,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46767203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peer reviewer topic choice and its impact on interrater reliability: A mixed-method study","authors":"Thomas Feliciani, Junwen Luo, K. Shankar","doi":"10.1162/qss_a_00207","DOIUrl":"https://doi.org/10.1162/qss_a_00207","url":null,"abstract":"Abstract One of the main critiques of academic peer review is that interrater reliability (IRR) among reviewers is low. We examine an underinvestigated factor possibly contributing to low IRR: reviewers’ diversity in their topic-criteria mapping (“TC-mapping”). It refers to differences among reviewers pertaining to which topics they choose to emphasize in their evaluations, and how they map those topics onto various evaluation criteria. In this paper we look at the review process of grant proposals in one funding agency to ask: How much do reviewers differ in TC-mapping, and do their differences contribute to low IRR? Through a content analysis of review forms submitted to a national funding agency (Science Foundation Ireland) and a survey of its reviewers, we find evidence of interreviewer differences in their TC-mapping. Using a simulation experiment we show that, under a wide range of conditions, even strong differences in TC-mapping have only a negligible impact on IRR. Although further empirical work is needed to corroborate simulation results, these tentatively suggest that reviewers’ heterogeneous TC-mappings might not be of concern for designers of peer review panels to safeguard IRR.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"832-856"},"PeriodicalIF":6.4,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45723631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An open data set of scholars on Twitter","authors":"P. Mongeon, T. Bowman, R. Costas","doi":"10.1162/qss_a_00250","DOIUrl":"https://doi.org/10.1162/qss_a_00250","url":null,"abstract":"Abstract The role played by research scholars in the dissemination of scientific knowledge on social media has always been a central topic in social media metrics (altmetrics) research. Different approaches have been implemented to identify and characterize active scholars on social media platforms like Twitter. Some limitations of past approaches were their complexity and, most importantly, their reliance on licensed scientometric and altmetric data. The emergence of new open data sources such as OpenAlex or Crossref Event Data provides opportunities to identify scholars on social media using only open data. This paper presents a novel and simple approach to match authors from OpenAlex with Twitter users identified in Crossref Event Data. The matching procedure is described and validated with ORCID data. The new approach matches nearly 500,000 matched scholars with their Twitter accounts with a level of high precision and moderate recall. The data set of matched scholars is described and made openly available to the scientific community to empower more advanced studies of the interactions of research scholars on Twitter.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"4 1","pages":"314-324"},"PeriodicalIF":6.4,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48774891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualizing academic descendants using modified Pavlo diagrams: Results based on five researchers in biomechanics and biomedicine","authors":"W. Lievers","doi":"10.1162/qss_a_00205","DOIUrl":"https://doi.org/10.1162/qss_a_00205","url":null,"abstract":"Abstract Visualizing the academic descendants of prolific researchers is a challenging problem. To this end, a modified Pavlo algorithm is presented and its utility is demonstrated based on manually collected academic genealogies of five researchers in biomechanics and biomedicine. The researchers have 15–32 children each and between 93 and 384 total descendants. The graphs generated by the modified algorithm were over 97% smaller than the original. Mentorship metrics were also calculated; their hm-indices are 5–7 and the gm-indices are in the range 7–13. Of the 1,096 unique researchers across the five family trees, 153 (14%) had graduated their own PhD students by the end of 2021. It took an average of 9.6 years after their own graduation for an advisor to graduate their first PhD student, which suggests that an academic generation in this field is approximately one decade. The manually collected data sets used were also compared against the crowd-sourced academic genealogy data from the AcademicTree.org website. The latter included only 45% of the people and 34% of the connections, so this limitation must be considered when using it for analyses where completeness is required. The data sets and an implementation of the algorithm are available for reuse.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"489-511"},"PeriodicalIF":6.4,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64426870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}