J.V. Ratnam, Swadhin K. Behera, Masami Nonaka, Kalpesh R. Patil
{"title":"Skillful prediction of Indian Ocean Dipole index using machine learning models","authors":"J.V. Ratnam, Swadhin K. Behera, Masami Nonaka, Kalpesh R. Patil","doi":"10.1016/j.acags.2025.100228","DOIUrl":"10.1016/j.acags.2025.100228","url":null,"abstract":"<div><div>In this study, we evaluated six machine learning models for their skill in predicting the Indian Ocean Dipole (IOD). The results based on the IOD index predictions at 1–8 month lead time indicate that the AdaBoost model with Multi-Layer Perceptron as the base estimator, AdaBoost(MLP), to perform better than the other five models in predicting the IOD index at all lead times. Interestingly, the IOD predictions of AdaBoost(MLP) had an anomaly correlation coefficient above 0.6 at almost all lead times. The results suggest that the AdaBoost(MLP) machine learning model to be a promising tool for predicting the IOD index with a long lead time of 8 months. Analysis revealed that the machine learning model predictions are aided by the signals from the Pacific region, owing to co-occurrences of some of the IODs with El Nino-Southern Oscillations.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100228"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating empirical analysis and deep learning for accurate monsoon prediction in Kerala, India","authors":"Yajnaseni Dash, Ajith Abraham","doi":"10.1016/j.acags.2024.100211","DOIUrl":"10.1016/j.acags.2024.100211","url":null,"abstract":"<div><div>Kerala, a coastal state in India characterized by its humid tropical monsoon climate, is profoundly influenced by the Western Ghats and the Arabian Sea. Kerala receives significant rainfall during both the southwest monsoon (June to September, JJAS) and the northeast monsoon (October to December, OND) seasons. Given the substantial impact of rainfall on the state's economy and livelihoods, accurate precipitation forecasting is of critical importance. Although Kerala's annual rainfall is approximately 2.5 times higher than the national average, the state frequently experiences water scarcity due to rapid runoff into the Arabian Sea. This study builds upon previous research concerning Kerala's rainfall patterns and introduces a novel approach to improving rainfall predictions. Usage of a hybrid model that integrates Empirical Mode Decomposition (EMD) with Detrended Fluctuation Analysis (DFA) and deep Long Short-Term Memory (LSTM) neural networks, demonstrates enhanced precision in forecasting. Thus, by integrating empirical data analysis with advanced deep learning techniques, this research offers a robust framework for predicting rainfall in Kerala, making a significant contribution to the field of climate informatics and providing practical benefits for the region's economy and environmental management.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100211"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehzooz Nizar , Jha K. Ambuj , Manmeet Singh , S.B. Vaisakh , G. Pandithurai
{"title":"CloudSense: A model for cloud type identification using machine learning from radar data","authors":"Mehzooz Nizar , Jha K. Ambuj , Manmeet Singh , S.B. Vaisakh , G. Pandithurai","doi":"10.1016/j.acags.2024.100209","DOIUrl":"10.1016/j.acags.2024.100209","url":null,"abstract":"<div><div>The knowledge of type of precipitating cloud is crucial for radar based quantitative estimates of precipitation. We propose a novel model called CloudSense which uses machine learning to accurately identify the type of precipitating clouds over the complex terrain locations in the Western Ghats (WG) of India. CloudSense uses vertical reflectivity profiles collected during July–August 2018 from an X-band radar to classify clouds into four categories namely stratiform, mixed stratiform-convective, convective and shallow clouds. The machine learning (ML) model used in CloudSense was trained using a dataset balanced by Synthetic Minority Oversampling Technique (SMOTE), with features selected based on physical characteristics relevant to different cloud types. Among various ML models evaluated Light Gradient Boosting Machine (LightGBM) demonstrate superior performance in classifying cloud types with a BAC (Balanced Accuracy) of 0.79 and F1-Score of 0.8. CloudSense generated results are also compared against conventional radar algorithms and we find that CloudSense performs better than radar algorithms. For 200 samples tested, the radar algorithm achieved a BAC of 0.69 and F1-Score of 0.68, whereas CloudSense achieved a BAC of 0.8 and F1-Score of 0.79. Our results show that ML based approach can provide more accurate cloud detection and classification which would be useful to improve precipitation estimates over the complex terrain of the WG.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100209"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manju Pharkavi Murugesu , Vignesh Krishnan , Anthony R. Kovscek
{"title":"Enhancing prediction of fluid-saturated fracture characteristics using deep learning super resolution","authors":"Manju Pharkavi Murugesu , Vignesh Krishnan , Anthony R. Kovscek","doi":"10.1016/j.acags.2024.100208","DOIUrl":"10.1016/j.acags.2024.100208","url":null,"abstract":"<div><div>Utilization of subsurface resources is essential to achieve energy sustainability including large-scale CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> sequestration, H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage, geothermal energy extraction, and hydrocarbon recovery. In-situ visualization of fluid flow in geological media is essential to understand complex, coupled, physical and chemical processes underlying fluid injection, storage, extraction. X-ray Computed Tomography (CT) in the laboratory has proven beneficial to visualize changes in the flow field with rapid temporal resolution (10’s s) and moderate spatial resolution (100’s <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>). There is a trade-off between spatial and temporal resolution that limits accurate characterization of dynamics in rock features that are below spatial resolution of CT. While past literature has offered solutions to improve resolution of CT rock images, including deep learning-based algorithms, our study uniquely focuses on improving dynamic, partially and fully fluid-saturated geological images. Fluid-saturated CT images offer additional information, through augmented signals provided by the presence of fluid. Among challenges, CT images of geological media inherently possess limited information due to their single-channel gray-scale source. Additionally, fluid flows through partially saturated media frustrate existing super resolution techniques because unsaturated CT images are an inaccurate proxy for saturated dynamic rock images. The novelty of this work is the expansion of a generative adversarial network (GAN) for applications involving super resolution of partially saturated low resolution CT images using end-member, unsaturated high resolution <span><math><mi>μ</mi></math></span>CT images. To this end, we acquired multiscale low- and high-resolution CT rock images in unsaturated and saturated states. Among GAN and convolutional neural networks, GAN’s produce realistic high-resolution reconstructions of saturated geological media when trained using high-resolution, unsaturated images and lower resolution images in various saturation states. The model has direct usefulness for interpretation of real-time images.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100208"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanbo Sun , Wenxing Bao , Wei Feng , Kewen Qu , Xuan Ma , Xiaowu Zhang
{"title":"An UNet3+ Network based on global pyramid aggregation for change detection in optical remote-sensing images","authors":"Yanbo Sun , Wenxing Bao , Wei Feng , Kewen Qu , Xuan Ma , Xiaowu Zhang","doi":"10.1016/j.acags.2024.100210","DOIUrl":"10.1016/j.acags.2024.100210","url":null,"abstract":"<div><div>Change detection (CD) is a meaningful and challenging task for remote sensing (RS) image analysis. Deep learning (DL) based methods have shown great potential in change detection tasks, there are still two problems with existing deep learning methods such as CNN and Transformer: (1) They do not target different depths to extract global semantics in the network; (2) The increase in network depth will lead to uncertainty in the edge pixels of changing targets and the absence of small targets. First, to address this challenge and address these issues, this work proposes a global pyramid aggregation UNet3+ (GPA-UNet3+) change detection model, that uses UNet3+ as the backbone network and connects the encoder and decoder with a pyramid structure. Secondly, a Global Atrous Spatial Pooling Pyramid Module (GASPPM) is proposed. Refined features at different depths and aggregated them to enhance the network’s ability to extract global semantics. Finally, the Edge Enhancement Channel Attention Module (EECAM) is specifically proposed to alleviate the edge pixel uncertainty and spatial position information loss caused by the increase in network depth. Multiple experiments are conducted on two common change detection datasets and a real dataset. Extensive experimental results show that the proposed method outperforms other state-of-the-art methods, achieving the highest F1-score of 90.95%, 95.31%, and 88.32% on the LEVIR-CD dataset, SVCD dataset and Shizuishan Mining Area dataset, respectively.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100210"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A machine learning approach for mapping susceptibility to land subsidence caused by ground water extraction","authors":"Diana Orlandi , Esteban Díaz , Roberto Tomás , Federico A. Galatolo , Mario G.C.A. Cimino , Carolina Pagli , Nicola Perilli","doi":"10.1016/j.acags.2024.100207","DOIUrl":"10.1016/j.acags.2024.100207","url":null,"abstract":"<div><div>Land subsidence is a worldwide threat that may cause irreversible damage to the environment and the infrastructures. Thus, identifying and mapping areas prone to land subsidence with accurate methods such as Land Subsidence Susceptibility Index (LSSI) mapping is crucial for mitigating the adverse impacts of this geohazard. Also, Machine Learning (ML) is now becoming a powerful tool to analyze vast and different datasets such as those necessary for LSSI mapping. In this study, we use the conventional Frequency Ratio (FR) method and ML models to generate LSSI maps of the region of Murcia (Spain) where land subsidence occurred in the past due to groundwater overdraft. A LSSI map was initially generated with known FR. Then, additional Conditioning Factors (CFs) with increased spatial resolution were used to train several ML models and generate a new LSSI map. The Extra-Trees Classifier (ETC) outperformed the other approaches, achieving the best performance with a weighted average precision and F1-Score of 0.96, after optimizing its hyperparameters. Then, a third LSSI map was calculated using the FR method and observations of land subsidence from InSAR (Interferometric Synthetic Aperture Radar). This study shows that the effectiveness of using several CFs depends on the added information of each layer. Moreover, the comparison between the different LSSI maps and InSAR data highlights the crucial role of the spatial resolution for accurate mapping, thus enhancing land subsidence risk assessment.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100207"},"PeriodicalIF":2.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajib Maity, Aman Srivastava, Subharthi Sarkar, Mohd Imran Khan
{"title":"Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning","authors":"Rajib Maity, Aman Srivastava, Subharthi Sarkar, Mohd Imran Khan","doi":"10.1016/j.acags.2024.100206","DOIUrl":"10.1016/j.acags.2024.100206","url":null,"abstract":"<div><div>Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are revolutionizing hydrology, driving significant advancements in water resource management, modeling, and prediction. This review synthesizes cutting-edge developments, methodologies, and applications of AI-ML-DL across key hydrological processes. By critically evaluating these techniques against traditional models, we highlight their superior ability to capture complex, nonlinear relationships and adapt to diverse environments. We further explore AI applications in precipitation forecasting, evapotranspiration estimation, groundwater dynamics, and extreme event prediction (floods, droughts, and compound events), showcasing their timely potential in addressing critical water-related challenges. A particular emphasis is placed on Explainable AI (XAI) and transfer learning as essential tools for improving model transparency and applicability, enabling broader stakeholder trust and cross-regional adaptability. The review also addresses persistent challenges, including data limitations, computational demands, and model interpretability, proposing solutions that integrate emerging technologies like quantum computing, the Internet of Things (IoT), and interdisciplinary collaboration. This review charts a strategic course for future research and practice by bridging AI advancements with practical hydrological applications. Our findings highlight the importance of embracing AI-driven approaches for next-generation hydrological modeling and provide actionable understandings for researchers, practitioners, and policymakers. As hydrology faces escalating challenges due to human-induced climate change and growing water demands, the continued evolution of AI-integrated models and innovations in data handling and stakeholder engagement will be imperative. In conclusion, the findings emphasize the critical role of AI-driven hydrological modeling in addressing global water challenges, including climate change adaptation, sustainable water resource management, and disaster risk reduction.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100206"},"PeriodicalIF":2.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation","authors":"Bisrat Teshome Weldemikael , Girma Woldetinsae , Girma Neshir","doi":"10.1016/j.acags.2024.100205","DOIUrl":"10.1016/j.acags.2024.100205","url":null,"abstract":"<div><div>Generative Adversarial Networks (GANs), specifically the Pix2Pix GAN, are used to effectively map gravity anomalies from satellite to ground, and adapt the Pix2Pix GAN model for large-scale data transformation. The impact of varying patch sizes on model performance is investigated using key metrics to ensure improved accuracy in gravity anomaly mapping. The model used 2728 satellite, and 2728 ground Bouguer gravity anomaly images from northern and northeast part of Ethiopia. 5456 images were used for training and 552 for testing. The findings indicate that Intermediate patch sizes, particularly 70 x 70 pixels, significantly enhanced model accuracy by capturing global features and contextual information. Additionally, models incorporating L2 loss with LcGAN demonstrated superior performance across qualitative metrics compared to those with L1 loss. The study will contribute to improve geophysical exploration by providing an alternative method that generates more accurate gravity maps, thereby enhancing the precision of geological models and related applications.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100205"},"PeriodicalIF":2.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconstruction of reservoir rock using attention-based convolutional recurrent neural network","authors":"Indrajeet Kumar, Anugrah Singh","doi":"10.1016/j.acags.2024.100202","DOIUrl":"10.1016/j.acags.2024.100202","url":null,"abstract":"<div><div>The digital reconstruction of reservoir rock or porous media is important as it enables us to visualize and explore their real internal structures. The reservoir rocks (such as sandstone and carbonate) contain both spatial and temporal characteristics, which pose a big challenge in their characterization through routine core analysis or x-ray microcomputer tomography. While x-ray micro-computed tomography gives us three-dimensional images of the porous media, it is often impossible to quantify the variability of the pore, grains, structure, and orientation experimentally. Recently, machine learning has successfully demonstrated the reconstruction ability of reservoir rock images or any porous media. These reservoir rock images are crucial for the digital characterization of the reservoir. We propose a novel algorithm consisting of the convolutional neural network, an attention mechanism, and a recurrent neural network for the reconstruction of reservoir rock or porous media images. The attention-based convolutional recurrent neural network (ACRNN) can reconstruct a representative sample of reservoir rocks. The reconstructed image quality was checked by comparing them with the original Parker sandstone, Leopard sandstone, carbonate shale, Berea sandstone, and sandy medium images. We evaluated the reconstruction by measuring pore and throat properties, two-point probability function, and structural similarity index. Results show that ACRNN can reconstruct reservoir rock or porous media of different scales with approximately the same geometrical, statistical, and topological parameters of the reservoir rock images. This deep learning method is computationally efficient, fast, and reliable for synthetic image realizations. The model was trained and validated on real images, and the reconstructed images showed excellent concordance with the real images having almost the same pore and grain structures. The deep learning-based digital rock reconstruction of reservoir rock or porous media images can aid in rapid image generation to better understand reservoir rock or subsurface formation.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100202"},"PeriodicalIF":2.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Netra R. Regmi , Nina D.S. Webb , Jacob I. Walter , Joonghyeok Heo , Nicholas W. Hayman
{"title":"Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data","authors":"Netra R. Regmi , Nina D.S. Webb , Jacob I. Walter , Joonghyeok Heo , Nicholas W. Hayman","doi":"10.1016/j.acags.2024.100203","DOIUrl":"10.1016/j.acags.2024.100203","url":null,"abstract":"<div><div>Landform maps are important tools in assessment of soil- and eco-hydrogeomorphic processes and hazards, hydrological modeling, and natural resources and land management. Traditional techniques of mapping landforms based on field surveys or from aerial photographs can be time and labor intensive, highlighting the importance of remote sensing products based automatic or semi-automatic approaches. In addition, the time-intensive manual labeling can also be subjective rather than an objective identification of the landform. Here we implemented such an objective approach applying a random forest machine learning algorithm to a set of observed landform data and 1m horizontal resolution bare-earth digital elevation model (DEM) developed from airborne light detection and ranging (LiDAR) data to rapidly map various landforms of a hilly landscape. The landform classification includes upland plateaus, ridges, convex slopes, planar slopes, concave slopes, stream channels, and valley bottoms, across a 400 km<sup>2</sup> hilly landscape of the Ozark Mountains in northeastern Oklahoma. We used 4200 landform observations (600 per landform) and eight topographic indices derived from 2 m, 5 m and 10 m resolution LiDAR DEM in random forest algorithm to develop 2 m, 5 m and 10 m resolution landform models. We test the effectiveness of DEM resolution in mapping landforms via comparison of observed landforms with modeled landforms. Results showed that the approach mapped ∼84% of observed landforms when covariates were at 2 m resolution to ∼89% when they were at 10 m resolution. However, predicted maps showed that the 2 m resolution covariates performed better at capturing accurate landform boundaries and details of small-sized landforms such as stream channels and ridges. The approach presented here significantly reduces the time required for mapping landforms compared to traditional techniques using aerial imagery and field observations and allows incorporation of a wide variety of covariates. The landform map developed using this approach has several potential applications. It could be utilized in hydrological modeling, natural resource management, and characterizing soil-geomorphic processes and hazards in a hilly landscape.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100203"},"PeriodicalIF":2.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}