{"title":"FeelingBlue: A Corpus for Understanding the Emotional Connotation of Color in Context","authors":"Amith Ananthram, Olivia Winn, S. Muresan","doi":"10.1162/tacl_a_00540","DOIUrl":"https://doi.org/10.1162/tacl_a_00540","url":null,"abstract":"While the link between color and emotion has been widely studied, how context-based changes in color impact the intensity of perceived emotions is not well understood. In this work, we present a new multimodal dataset for exploring the emotional connotation of color as mediated by line, stroke, texture, shape, and language. Our dataset, FeelingBlue, is a collection of 19,788 4-tuples of abstract art ranked by annotators according to their evoked emotions and paired with rationales for those annotations. Using this corpus, we present a baseline for a new task: Justified Affect Transformation. Given an image I, the task is to 1) recolor I to enhance a specified emotion e and 2) provide a textual justification for the change in e. Our model is an ensemble of deep neural networks which takes I, generates an emotionally transformed color palette p conditioned on I, applies p to I, and then justifies the color transformation in text via a visual-linguistic model. Experimental results shed light on the emotional connotation of color in context, demonstrating both the promise of our approach on this challenging task and the considerable potential for future investigations enabled by our corpus.1","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"176-190"},"PeriodicalIF":10.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44321137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transformers for Tabular Data Representation: A Survey of Models and Applications","authors":"Gilbert Badaro, Mohammed Saeed, Paolo Papotti","doi":"10.1162/tacl_a_00544","DOIUrl":"https://doi.org/10.1162/tacl_a_00544","url":null,"abstract":"In the last few years, the natural language processing community has witnessed advances in neural representations of free texts with transformer-based language models (LMs). Given the importance of knowledge available in tabular data, recent research efforts extend LMs by developing neural representations for structured data. In this article, we present a survey that analyzes these efforts. We first abstract the different systems according to a traditional machine learning pipeline in terms of training data, input representation, model training, and supported downstream tasks. For each aspect, we characterize and compare the proposed solutions. Finally, we discuss future work directions.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"227-249"},"PeriodicalIF":10.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42574974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Davani, M. Atari, Brendan Kennedy, Morteza Dehghani
{"title":"Hate Speech Classifiers Learn Normative Social Stereotypes","authors":"A. Davani, M. Atari, Brendan Kennedy, Morteza Dehghani","doi":"10.1162/tacl_a_00550","DOIUrl":"https://doi.org/10.1162/tacl_a_00550","url":null,"abstract":"Social stereotypes negatively impact individuals’ judgments about different groups and may have a critical role in understanding language directed toward marginalized groups. Here, we assess the role of social stereotypes in the automated detection of hate speech in the English language by examining the impact of social stereotypes on annotation behaviors, annotated datasets, and hate speech classifiers. Specifically, we first investigate the impact of novice annotators’ stereotypes on their hate-speech-annotation behavior. Then, we examine the effect of normative stereotypes in language on the aggregated annotators’ judgments in a large annotated corpus. Finally, we demonstrate how normative stereotypes embedded in language resources are associated with systematic prediction errors in a hate-speech classifier. The results demonstrate that hate-speech classifiers reflect social stereotypes against marginalized groups, which can perpetuate social inequalities when propagated at scale. This framework, combining social-psychological and computational-linguistic methods, provides insights into sources of bias in hate-speech moderation, informing ongoing debates regarding machine learning fairness.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"300-319"},"PeriodicalIF":10.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46301957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discontinuous Combinatory Constituency Parsing","authors":"Zhousi Chen, Mamoru Komachi","doi":"10.1162/tacl_a_00546","DOIUrl":"https://doi.org/10.1162/tacl_a_00546","url":null,"abstract":"We extend a pair of continuous combinator-based constituency parsers (one binary and one multi-branching) into a discontinuous pair. Our parsers iteratively compose constituent vectors from word embeddings without any grammar constraints. Their empirical complexities are subquadratic. Our extension includes 1) a swap action for the orientation-based binary model and 2) biaffine attention for the chunker-based multi-branching model. In tests conducted with the Discontinuous Penn Treebank and TIGER Treebank, we achieved state-of-the-art discontinuous accuracy with a significant speed advantage.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"267-283"},"PeriodicalIF":10.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46282893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Graph-based Reentrancy-free Semantic Parsing","authors":"Alban Petit, Caio Corro","doi":"10.1162/tacl_a_00570","DOIUrl":"https://doi.org/10.1162/tacl_a_00570","url":null,"abstract":"We propose a novel graph-based approach for semantic parsing that resolves two problems observed in the literature: (1) seq2seq models fail on compositional generalization tasks; (2) previous work using phrase structure parsers cannot cover all the semantic parses observed in treebanks. We prove that both MAP inference and latent tag anchoring (required for weakly-supervised learning) are NP-hard problems. We propose two optimization algorithms based on constraint smoothing and conditional gradient to approximately solve these inference problems. Experimentally, our approach delivers state-of-the-art results on GeoQuery, Scan, and Clevr, both for i.i.d. splits and for splits that test for compositional generalization.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"703-722"},"PeriodicalIF":10.9,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46924311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erasure of Unaligned Attributes from Neural Representations","authors":"Shun Shao, Yftah Ziser, Shay B. Cohen","doi":"10.1162/tacl_a_00558","DOIUrl":"https://doi.org/10.1162/tacl_a_00558","url":null,"abstract":"We present the Assignment-Maximization Spectral Attribute removaL (AMSAL) algorithm, which erases information from neural representations when the information to be erased is implicit rather than directly being aligned to each input example. Our algorithm works by alternating between two steps. In one, it finds an assignment of the input representations to the information to be erased, and in the other, it creates projections of both the input representations and the information to be erased into a joint latent space. We test our algorithm on an extensive array of datasets, including a Twitter dataset with multiple guarded attributes, the BiasBios dataset, and the BiasBench benchmark. The latter benchmark includes four datasets with various types of protected attributes. Our results demonstrate that bias can often be removed in our setup. We also discuss the limitations of our approach when there is a strong entanglement between the main task and the information to be erased.1","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"488-510"},"PeriodicalIF":10.9,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43206955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unleashing the True Potential of Sequence-to-Sequence Models for Sequence Tagging and Structure Parsing","authors":"Han He, Jinho D. Choi","doi":"10.1162/tacl_a_00557","DOIUrl":"https://doi.org/10.1162/tacl_a_00557","url":null,"abstract":"Sequence-to-Sequence (S2S) models have achieved remarkable success on various text generation tasks. However, learning complex structures with S2S models remains challenging as external neural modules and additional lexicons are often supplemented to predict non-textual outputs. We present a systematic study of S2S modeling using contained decoding on four core tasks: part-of-speech tagging, named entity recognition, constituency, and dependency parsing, to develop efficient exploitation methods costing zero extra parameters. In particular, 3 lexically diverse linearization schemas and corresponding constrained decoding methods are designed and evaluated. Experiments show that although more lexicalized schemas yield longer output sequences that require heavier training, their sequences being closer to natural language makes them easier to learn. Moreover, S2S models using our constrained decoding outperform other S2S approaches using external resources. Our best models perform better than or comparably to the state-of-the-art for all 4 tasks, lighting a promise for S2S models to generate non-sequential structures.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"582-599"},"PeriodicalIF":10.9,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42828943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling Emotion Dynamics in Song Lyrics with State Space Models","authors":"Yingjin Song, Daniel Beck","doi":"10.1162/tacl_a_00541","DOIUrl":"https://doi.org/10.1162/tacl_a_00541","url":null,"abstract":"Most previous work in music emotion recognition assumes a single or a few song-level labels for the whole song. While it is known that different emotions can vary in intensity within a song, annotated data for this setup is scarce and difficult to obtain. In this work, we propose a method to predict emotion dynamics in song lyrics without song-level supervision. We frame each song as a time series and employ a State Space Model (SSM), combining a sentence-level emotion predictor with an Expectation-Maximization (EM) procedure to generate the full emotion dynamics. Our experiments show that applying our method consistently improves the performance of sentence-level baselines without requiring any annotated songs, making it ideal for limited training data scenarios. Further analysis through case studies shows the benefits of our method while also indicating the limitations and pointing to future directions.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"157-175"},"PeriodicalIF":10.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43532889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Communication Drives the Emergence of Language Universals in Neural Agents: Evidence from the Word-order/Case-marking Trade-off","authors":"Yuchen Lian, Arianna Bisazza, T. Verhoef","doi":"10.1162/tacl_a_00587","DOIUrl":"https://doi.org/10.1162/tacl_a_00587","url":null,"abstract":"Abstract Artificial learners often behave differently from human learners in the context of neural agent-based simulations of language emergence and change. A common explanation is the lack of appropriate cognitive biases in these learners. However, it has also been proposed that more naturalistic settings of language learning and use could lead to more human-like results. We investigate this latter account, focusing on the word-order/case-marking trade-off, a widely attested language universal that has proven particularly hard to simulate. We propose a new Neural-agent Language Learning and Communication framework (NeLLCom) where pairs of speaking and listening agents first learn a miniature language via supervised learning, and then optimize it for communication via reinforcement learning. Following closely the setup of earlier human experiments, we succeed in replicating the trade-off with the new framework without hard-coding specific biases in the agents. We see this as an essential step towards the investigation of language universals with neural learners.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"1033-1047"},"PeriodicalIF":10.9,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43044930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xudong Hong, A. Sayeed, K. Mehra, Vera Demberg, B. Schiele
{"title":"Visual Writing Prompts: Character-Grounded Story Generation with Curated Image Sequences","authors":"Xudong Hong, A. Sayeed, K. Mehra, Vera Demberg, B. Schiele","doi":"10.1162/tacl_a_00553","DOIUrl":"https://doi.org/10.1162/tacl_a_00553","url":null,"abstract":"Current work on image-based story generation suffers from the fact that the existing image sequence collections do not have coherent plots behind them. We improve visual story generation by producing a new image-grounded dataset, Visual Writing Prompts (VWP). VWP contains almost 2K selected sequences of movie shots, each including 5-10 images. The image sequences are aligned with a total of 12K stories which were collected via crowdsourcing given the image sequences and a set of grounded characters from the corresponding image sequence. Our new image sequence collection and filtering process has allowed us to obtain stories that are more coherent, diverse, and visually grounded compared to previous work. We also propose a character-based story generation model driven by coherence as a strong baseline. Evaluations show that our generated stories are more coherent, visually grounded, and diverse than stories generated with the current state-of-the-art model. Our code, image features, annotations and collected stories are available at https://vwprompt.github.io/.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"565-581"},"PeriodicalIF":10.9,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45975746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}