Food Hydrocolloids最新文献

筛选
英文 中文
The use of dextran in 3D printing for dysphagia foods: Relationships between its structure and physicochemical properties 将右旋糖酐用于吞咽困难食品的 3D 打印:右旋糖酐的结构与理化特性之间的关系
IF 11 1区 农林科学
Food Hydrocolloids Pub Date : 2024-11-05 DOI: 10.1016/j.foodhyd.2024.110819
Yiqiang Dai , Yifei Liu , Zhe Wang , Weimin Xu , Mingsheng Dong , Xiudong Xia , Daoying Wang
{"title":"The use of dextran in 3D printing for dysphagia foods: Relationships between its structure and physicochemical properties","authors":"Yiqiang Dai ,&nbsp;Yifei Liu ,&nbsp;Zhe Wang ,&nbsp;Weimin Xu ,&nbsp;Mingsheng Dong ,&nbsp;Xiudong Xia ,&nbsp;Daoying Wang","doi":"10.1016/j.foodhyd.2024.110819","DOIUrl":"10.1016/j.foodhyd.2024.110819","url":null,"abstract":"<div><div>Novel naturally sourced polysaccharides are gaining attention for their safety and improvement in food texture. This study investigated the correlations between the structural characteristics and physicochemical properties of dextran GS128 derived from <em>Leuconostoc citreum</em> SH12, and assessed its applicability in three-dimensional (3D) printed whole grain and legume-based (whole grain oat, chickpea and soybean) foods designed for dysphagia patients. The findings revealed that GS128 had a non-crystalline amorphous nature and high thermostability, suggesting its food processing potential. GS128 aqueous solution showed shear thinning and elastic gel behavior, and excellent thixotropic and structural recovery properties, and their effects were positive dose-dependent at the concentration of 4∼10 wt%, which were determined by its nearly linear structure mainly composed of 87.74% α-(1 → 6) linkages with a high molecular weight of 3.02 × 10<sup>8</sup> Da. Moreover, the addition of 4∼10 wt% GS128 not only retained the shape of 3D printed whole grain and legume food, but also improved the swallowability by 33.26–74.60% compared with food without GS128, indicating the usage potential for dysphagia people. Overall, GS128 as a texture modifier has significant potential for application in the food industry, especially in the development of 3D-printed dysphagia diets.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110819"},"PeriodicalIF":11.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rubisco at interfaces II: Structural reassembly enhances oil-water interface and emulsion stabilization 界面上的 Rubisco II:结构重组增强了油水界面和乳液的稳定性
IF 11 1区 农林科学
Food Hydrocolloids Pub Date : 2024-11-05 DOI: 10.1016/j.foodhyd.2024.110820
Xingfa Ma, Mehdi Habibi, Jasper Landman, Leonard M.C. Sagis, Penghui Shen
{"title":"Rubisco at interfaces II: Structural reassembly enhances oil-water interface and emulsion stabilization","authors":"Xingfa Ma,&nbsp;Mehdi Habibi,&nbsp;Jasper Landman,&nbsp;Leonard M.C. Sagis,&nbsp;Penghui Shen","doi":"10.1016/j.foodhyd.2024.110820","DOIUrl":"10.1016/j.foodhyd.2024.110820","url":null,"abstract":"<div><div>Rubisco is the most abundant protein on earth and has gained extensive attentions as a novel food ingredient, such as an emulsifier. Extraction methods can significantly affect its molecular structures and consequently influence its oil-water interface and emulsion stabilization properties. This work aims to elucidate the role of the Rubisco molecular structure in stabilizing the oil-water interface and the multiphase system of emulsions. Ultrafiltration (mild) and acid precipitation-alkaline redispersion (extensive) were used to extract Rubisco from spinach leaves. Protein molecular properties were characterized by size exclusion chromatography (SEC), circular dichroism (CD), and fluorescence spectrometry. Subsequently, the oil-water interfacial properties, including the adsorption and rheological behavior in both small and large dilatational and shear deformations, and the emulsion stabilization properties of Rubisco were investigated. We found that acid precipitation-alkaline redispersion produced a Rubisco extract (RA) with extensive structural reassembling, compared to the one produced by ultrafiltration (RU), for which nativity was mostly retained. RA had two-fold higher surface hydrophobicity than RU, and this caused RA to adsorb faster to the oil-water interface and developed a stiffer solid-like interface (G<sub>i</sub>’ = 26 ± 3 mN/m) than RU (G<sub>i</sub>’ = 15 ± 2 mN/m), which was also more resistant to density changes in large dilatational deformations. Consequently, RA displayed higher emulsifying activity and emulsion stability to coalescence during bulk shear and storage. Additionally, structural reassembly resulted in a higher value of the zeta potential of RA, which made the emulsion more stable against flocculation, compared to RU. Our study demonstrates that structural reassembly might be a useful strategy to improve the behavior of plant proteins in oil-water interface and emulsion stabilization, and may stimulate the development of new plant protein-stabilized emulsion-based products.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110820"},"PeriodicalIF":11.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upcycling stale bread into (meso)porous materials: Xerogels and aerogels 将过期面包改造成(中)多孔材料:疏水凝胶和气凝胶
IF 11 1区 农林科学
Food Hydrocolloids Pub Date : 2024-11-01 DOI: 10.1016/j.foodhyd.2024.110807
Wanxiang Guo , Tatiana Budtova , Mario M. Martinez
{"title":"Upcycling stale bread into (meso)porous materials: Xerogels and aerogels","authors":"Wanxiang Guo ,&nbsp;Tatiana Budtova ,&nbsp;Mario M. Martinez","doi":"10.1016/j.foodhyd.2024.110807","DOIUrl":"10.1016/j.foodhyd.2024.110807","url":null,"abstract":"<div><div>This work explores the upcycling of stale bread into bio-based, low-density porous materials with partial mesoporosity, produced through gelatinization and drying, using either supercritical CO<sub>2</sub> (aerogels) or low-vacuum conditions (xerogels). Cryogels were also fabricated via freeze-drying for comparison purposes. Stale bread particles (Bread) were subjected to proteolytic gluten depletion (Gluten-Depleted Bread, GDB) or particle size reduction (Finely milled Bread, FB) to investigate the effect of protein removal or particle size on porous materials’ properties. Porous materials made from wheat starch (WS) and wheat flour (Flour) were also examined for comparison. The solvent exchange induced volume shrinkage (SE-VS), which accounted for over 87% of the total shrinkage, ranged from 62% in GDB to 78% in WS. Bread-based porous materials presented comparable specific surface area (∼40 m<sup>2</sup>/g) and water absorption capacity (∼400%) to WS materials, but outperformed in resistance to volume shrinkage, resulting in lower density. FB porous materials possessed a higher specific surface area than Bread materials, indicating the benefits of particle size reduction. Furthermore, gluten depletion resulted in GDB-aerogels with the highest specific surface area (∼80 m<sup>2</sup>/g), highlighting the benefits of gluten depletion. However, WS materials exhibited significantly greater maximum compressive stress (&gt;2.0 MPa) and compressive modulus (&gt;6 MPa) than stale bread-based porous materials. Importantly, the porous properties of xerogels and aerogels were similar (differences &lt; 10%), indicating the feasibility of using low vacuum drying to produce new porous materials with partial mesoporosity (surface area 60–80 m<sup>2</sup>/g) from stale bread at a lower cost.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110807"},"PeriodicalIF":11.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan-alginate polyelectrolyte complexes for encapsulation of low molecular weight fish bioactive peptides 用于封装低分子量鱼类生物活性肽的壳聚糖-精氨酸聚电解质复合物
IF 11 1区 农林科学
Food Hydrocolloids Pub Date : 2024-10-28 DOI: 10.1016/j.foodhyd.2024.110789
Yoni Atma , Amin Sadeghpour , Brent S. Murray , Francisco M. Goycoolea
{"title":"Chitosan-alginate polyelectrolyte complexes for encapsulation of low molecular weight fish bioactive peptides","authors":"Yoni Atma ,&nbsp;Amin Sadeghpour ,&nbsp;Brent S. Murray ,&nbsp;Francisco M. Goycoolea","doi":"10.1016/j.foodhyd.2024.110789","DOIUrl":"10.1016/j.foodhyd.2024.110789","url":null,"abstract":"<div><div>Encapsulation of low molecular weight (M<sub>w</sub>) bioactive peptides (BAPs) in electrostatically mediated polyelectrolyte complexes (PECs) of sodium alginate (ALG) and chitosan (CS) was studied, formed via a simple one-step mixing process. PECs were characterized via dynamic light scattering (DLS), mixed-mode phase analysis light scattering (M3-PALS), static light scattering (SLS), small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The encapsulation efficiency (EE) and <em>in vitro</em> release of low M<sub>w</sub> antihypertensive LKPNM and LKP BAPs (derived from fish hydrolysates) were measured, under both gastric and intestinal pH conditions, via high performance liquid chromatography (HPLC). Two different ALG were tested (M<sub>w</sub> ≈ 8 and 21 kDa, with mannuronic: guluronic ratios 5.1 and 1.4, respectively), whilst the M<sub>w</sub> and degree of acetylation (DA) of the CS were ≈111 kDa and ≈10 %, respectively. At the pH (5.5) of PEC formation the BAPs were positively charged. As the molar charge ratio of alginate to chitosan (n<sup>−</sup>/n<sup>+</sup>) was increased from 0.1 to 0.6 the PEC size reduced from <em>ca.</em> 800 to 300 ± 50 nm, indicating more compact structures, but increased again significantly to &gt;10 μm around charge neutralisation (n<sup>−</sup>/n<sup>+</sup> = 1) and net PEC ζ-potential swapping from +ve to –ve. The size then decreased again to between 1 and 10 μm as n<sup>−</sup>/n<sup>+</sup> → 10, as expected if the more prevalent polysaccharide (ALG) coated the surface of the PECs. However, higher M<sub>w</sub> ALG gave significantly smaller (more compact) and more highly negatively charged PECs for n<sup>−</sup>/n<sup>+</sup> &gt; 1. The PECs showed high (≈80%) EE but low (10–20%) release in gastrointestinal conditions, highlighting their potential as effective carriers of such BAPs.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110789"},"PeriodicalIF":11.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of interactive forces and complex formation from Arthrospira platensis extract with high methoxylated pectin, low methoxylated pectin and lambda-carrageenan 研究节肢动物板蓝根提取物与高甲氧基化果胶、低甲氧基化果胶和λ-卡拉胶的相互作用力和络合物的形成
IF 11 1区 农林科学
Food Hydrocolloids Pub Date : 2024-10-22 DOI: 10.1016/j.foodhyd.2024.110774
Stephan Buecker , Elena Leeb , Monika Gibis , Jochen Weiss
{"title":"Study of interactive forces and complex formation from Arthrospira platensis extract with high methoxylated pectin, low methoxylated pectin and lambda-carrageenan","authors":"Stephan Buecker ,&nbsp;Elena Leeb ,&nbsp;Monika Gibis ,&nbsp;Jochen Weiss","doi":"10.1016/j.foodhyd.2024.110774","DOIUrl":"10.1016/j.foodhyd.2024.110774","url":null,"abstract":"<div><div>Numerous complexation mechanisms have been explored to stabilize the blue pigment phycocyanin from <em>Arthrospira platensis</em>. However, previous studies have primarily focused on the application of various methods rather than delving into molecular interactions. This study compared the interactions of citrus pectins with a high degree of esterification and a low degree of esterification as well as lambda-carrageenan. The goal was to identify a molecule suitable for complexation that maintains stability against heating in terms of color and colloidal stability. Size measurements employing dynamic light scattering and static light scattering, as well as characterization of properties such as zeta potential, were performed for the various complexes. Moreover, the complexation mechanism was investigated by isothermal titration calorimetry and computational blind docking. Weak complexes were formed at neutral pH, driven by an entropy gain facilitated by hydrophobic interactions and van der Waals forces between non-polar groups. It seems that this step is essential in achieving structures with a core shell formation. A decrease in pH resulted in intensified complex formation driven by enhanced electrostatic interactions, leading to a shift in enthalpy from values between −4 and −23 kJ٠mol<sup>−1</sup> to values between −15 and −25 kJ٠mol<sup>−1</sup>. Multiple binding sites were identified across the protein surfaces, primarily involving polar groups. Interactions with arginine were particularly significant, exhibiting 28 interaction counts compared to only 8 for threonine, despite threonine's greater prominence in the protein sequence. These interactions are thought to compete with interactions between allophycocyanin and c-phycocyanin subunits and protein chromophore interactions, resulting in a color shift. The study highlights the importance of selecting the appropriate biopolymer for optimal performance, considering the delicate balance between strong interactions and bulkiness to prevent complex precipitation.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110774"},"PeriodicalIF":11.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncovalent interaction between proanthocyanidins and soy protein isolate fibers: Structure, functionality and interaction mechanism 原花青素与大豆分离蛋白纤维之间的非共价相互作用:结构、功能和相互作用机制
IF 11 1区 农林科学
Food Hydrocolloids Pub Date : 2024-09-19 DOI: 10.1016/j.foodhyd.2024.110663
Yongchao Yin, Xiaoyu Yang, Liang Li
{"title":"Noncovalent interaction between proanthocyanidins and soy protein isolate fibers: Structure, functionality and interaction mechanism","authors":"Yongchao Yin,&nbsp;Xiaoyu Yang,&nbsp;Liang Li","doi":"10.1016/j.foodhyd.2024.110663","DOIUrl":"10.1016/j.foodhyd.2024.110663","url":null,"abstract":"<div><div>This study focused on the addition of different concentrations of proanthocyanidins (OPC) to form noncovalent complexes with soy protein isolate fibers (SPIF). To investigate the effects of polyphenols on the structural and functional properties of protein fibers and to elucidate the mechanism of their interaction. The addition of OPC unfolded the internal structure of the proteins, exposing the hydrophobic groups and reducing the β-sheet structure of SPIF, forming the SPIF-OPC complexes. And the binding of the two would be close to saturation, at the final concentration of added OPC was 0.5 or 1 mg/mL. Multiple spectroscopy and isothermal titration calorimetry analyses indicated that static quenching was the mechanism of fluorescence quenching of SPIF by OPC. The two spontaneously combined through hydrogen bonding and hydrophobic interactions. Transmission electron microscopy observations of the microscopic morphology also indicated that the addition of OPC altered the original long, semi-flexible fibers structure of SPIF. The fibers gradually showed a large number of branches and became short and curved. When the final concentration of added OPC was 4 mg/mL, the emulsifying activity index of SPIF increased by 78.40% and the foaming capacity of SPIF increased by 37.10%. The interaction mechanism of different concentrations of OPC with SPIF will be comprehensively understood from this study, thus expanding its application in food, medicine, cosmetics, and other fields.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110663"},"PeriodicalIF":11.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing bioavailability of soy protein isolate (SPI) nanoparticles through limited enzymatic hydrolysis: Modulating structural properties for improved digestion and absorption 通过有限的酶水解提高大豆分离蛋白(SPI)纳米颗粒的生物利用度:调节结构特性以改善消化和吸收
IF 10.7 1区 农林科学
Food Hydrocolloids Pub Date : 2023-10-07 DOI: 10.1016/j.foodhyd.2023.109397
Ling Chen , Yuan Lv , Fang Zhong
{"title":"Enhancing bioavailability of soy protein isolate (SPI) nanoparticles through limited enzymatic hydrolysis: Modulating structural properties for improved digestion and absorption","authors":"Ling Chen ,&nbsp;Yuan Lv ,&nbsp;Fang Zhong","doi":"10.1016/j.foodhyd.2023.109397","DOIUrl":"https://doi.org/10.1016/j.foodhyd.2023.109397","url":null,"abstract":"<div><p><span>The bioavailability of nanoparticles during the digestive process is intricately linked to their structural integrity and interactions with bile salts. In this study, enzymatically hydrolyzed protein nanoparticles encapsulating </span><em>β</em>-carotene (BC) were prepared using three proteases with different cleavage specificity. <em>In vitro</em><span> digestion and cellular uptake models are employed to investigate the structural changes of BC during the digestion process and their bioavailability. It was found that Flavorzyme exhibited lower hydrolysis degree as compared to Neutrase and Alcalase, selectively hydrolyzing the 7S subunit of SPI while retaining a higher content of acidic peptides within the 11S subunit, resulting in higher surface hydrophobicity. Therefore, partially hydrolyzed protein nanoparticles (SPIH@NPs) prepared with Flavorzyme (SPIH–F@NP) demonstrated the strongest resistance to digestion. Compared to SPI nanoparticles, the release rate of </span><em>β</em>-carotene in SPIH-F@NP was reduced from 25.99% to 13.13%, leading to a higher retention of <em>β</em>-carotene in the aqueous phase and a 2.66-fold increase in its bioaccessibility. Moreover, SPIH-F@NP demonstrated the highest affinity for bile salts, resulting in a 1.48-fold improvement in the absorption efficiency of <em>β</em>-carotene compared to SPI nanoparticles. These findings establish a theoretical basis for further enhancing the application potential of protein-based nanoparticles in terms of bioavailability.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"147 ","pages":"Article 109397"},"PeriodicalIF":10.7,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49670862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation and structural characteristics of pea globulin amyloid-like fibrils pretreated with low-frequency magnetic field 低频磁场预处理豌豆球蛋白淀粉样纤维的形成及结构特征
IF 10.7 1区 农林科学
Food Hydrocolloids Pub Date : 2023-09-23 DOI: 10.1016/j.foodhyd.2023.109331
Qing-Qing Liu , Qin Yang , Ya-Ru Wang , Yi-Xuan Jiang , Han-Qing Chen
{"title":"Formation and structural characteristics of pea globulin amyloid-like fibrils pretreated with low-frequency magnetic field","authors":"Qing-Qing Liu ,&nbsp;Qin Yang ,&nbsp;Ya-Ru Wang ,&nbsp;Yi-Xuan Jiang ,&nbsp;Han-Qing Chen","doi":"10.1016/j.foodhyd.2023.109331","DOIUrl":"https://doi.org/10.1016/j.foodhyd.2023.109331","url":null,"abstract":"<div><p>In this study, the effect of low-frequency magnetic field (LF-MF) on the formation and structural characteristics of pea globulin (PG) amyloid-like fibrils were investigated. The results showed that the structure of PG unfolded after LF-MF pretreatment. And PG pretreated with LF-MF (MPG) exhibited higher thioflavin T fluorescence intensity during the fibrillation compared with native PG (NPG), indicating that LF-MF could enhance the ability of PG to form amyloid-like fibrils. During the fibrillation process, the PG was hydrolyzed into small peptides in the initial stage of heating, leading to decreased particle size, as evidenced by the degraded subunits. The average particle size then increased with the small peptides aggregating, and the ordered amyloid-like fibrils with high content of β-sheets were formed. But the fibrils generated by MPG were larger in size and had a higher content of β-sheets. The formation of PG amyloid-like fibrils was confirmed by AFM images, and LF-MF pretreatment resulted in the generation of longer and thicker PG fibrils. The results of surface hydrophobicity showed that the hydrophobic interactions played an important role in the fibrillation process of PG. This work may provide a deep understanding about the effect of LF-MF on the assembly behavior and structural characteristics of PG amyloid-like fibrils.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"147 ","pages":"Article 109331"},"PeriodicalIF":10.7,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41082561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Preparation and characterization of cinnamon essential oil Pickering emulsion stabilized by zein/carboxylated cellulose nanocrystals composite nanoparticles 玉米醇溶蛋白/羧化纤维素纳米复合纳米粒子稳定肉桂精油Pickering乳液的制备与表征
IF 10.7 1区 农林科学
Food Hydrocolloids Pub Date : 2023-09-21 DOI: 10.1016/j.foodhyd.2023.109321
Weili Qin , Shaotong Tang , Chenwei Chen , Jing Xie
{"title":"Preparation and characterization of cinnamon essential oil Pickering emulsion stabilized by zein/carboxylated cellulose nanocrystals composite nanoparticles","authors":"Weili Qin ,&nbsp;Shaotong Tang ,&nbsp;Chenwei Chen ,&nbsp;Jing Xie","doi":"10.1016/j.foodhyd.2023.109321","DOIUrl":"https://doi.org/10.1016/j.foodhyd.2023.109321","url":null,"abstract":"<div><p><span>The composite nanoparticles labeled as ZCP/C–CNC were synthesized by the combination of zein colloidal nanoparticles (ZCP) and carboxylated cellulose nanocrystals (C–CNC). The effects of the mass ratio of ZCP to C–CNC on the particle size, polydispersity index, ζ-potential, surface wettability and microstructure of ZCP/C–CNC were studied. The ZCP/C–CNC were used to stabilize cinnamon essential oil (CEO). The effects of ZCP/C–CNC on the properties of Pickering emulsions were investigated, including the interfacial tension, stability, encapsulation efficiency (EE), interfacial structure and antibacterial activity. With increasing of ZCP, the average particle size of ZCP/C–CNC firstly decreased and then increased, which was the smallest (196 nm) when the mass ratio of ZCP to C–CNC was 1. Scanning electron microscopy (SEM) showed that the structure of composite nanoparticles was featured that C–CNC layers wrapped ZCP. Confocal laser scanning microscope (CLSM) showed that CEO was effectively encapsulated by ZCP/C–CNC. When the mass ratio of ZCP to C–CNC was 1, the three-phase contact angle of the nanoparticle was 89.65°, showing the best surface wettability. And the CEO Pickering emulsion stabilized by this nanoparticle exhibited the smallest average particle size. It also showed the best stability and the best antibacterial activity against </span><span><em>E. coli</em></span>, <span><em>S. aureus</em></span> and <em>S. putrefaciens</em><span>. The EE of composite nanoparticles for CEO was significantly higher than that of pure ZCP or C–CNC particles, which all exceeded 91%. The Pickering emulsions stabilized by ZCP/C–CNC provided a promising alternative for the delivery of antimicrobial essential oils in the food, active packaging material and other related industries.</span></p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"147 ","pages":"Article 109321"},"PeriodicalIF":10.7,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41082545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensory properties of foods functionalised with milk proteins 乳蛋白功能化食品的感官特性
IF 10.7 1区 农林科学
Food Hydrocolloids Pub Date : 2023-09-21 DOI: 10.1016/j.foodhyd.2023.109301
Andrea Balivo, Giulia d’Errico, Alessandro Genovese
{"title":"Sensory properties of foods functionalised with milk proteins","authors":"Andrea Balivo,&nbsp;Giulia d’Errico,&nbsp;Alessandro Genovese","doi":"10.1016/j.foodhyd.2023.109301","DOIUrl":"https://doi.org/10.1016/j.foodhyd.2023.109301","url":null,"abstract":"<div><p>The growing interest in a healthy lifestyle has motivated consumers to ask for functional foods capable of conferring additional benefits to simple nutrition. However, such functional products must also meet the sensory features required by the market to be competitive and acceptable for consumption. In this regard, milk proteins have been very successful due to their nutritional quality and their versatility as food ingredients. Here we have reviewed the current knowledge on the use of native or customised milk proteins to improve the nutritional and techno-functional properties of functional foods. We also explore the interactions between milk proteins and other matrix components (i.e., volatile compounds and phenolic compounds), focusing on the effects of their addition on the physicochemical and sensory properties. Furthermore, we discuss the applications of milk proteins (whey and casein-based ingredients) in both dairy and non-dairy foods. Milk proteins are versatile and can be used to develop customised milk protein-based ingredients with the most desired functional properties. Their binding properties with volatile and phenolic compounds improve the flavour perception, helping to reduce fat, sugar and salt in foods. Such interactions between milk proteins and food matrix components can change the protein structure imparting new functional properties. Depending on the food formulation and purpose, the amount and type of milk protein to be used are good variables to consider in order to optimise the technological and sensory properties of food.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"147 ","pages":"Article 109301"},"PeriodicalIF":10.7,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41082549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信