{"title":"Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-Gaussian distributions","authors":"Shohei Shimizu, K. Bollen","doi":"10.5555/2627435.2697051","DOIUrl":"https://doi.org/10.5555/2627435.2697051","url":null,"abstract":"Several existing methods have been shown to consistently estimate causal direction assuming linear or some form of nonlinear relationship and no latent confounders. However, the estimation results could be distorted if either assumption is violated. We develop an approach to determining the possible causal direction between two observed variables when latent confounding variables are present. We first propose a new linear non-Gaussian acyclic structural equation model with individual-specific effects that are sometimes the source of confounding. Thus, modeling individual-specific effects as latent variables allows latent confounding to be considered. We then propose an empirical Bayesian approach for estimating possible causal direction using the new model. We demonstrate the effectiveness of our method using artificial and real-world data.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"241 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122840066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cluster analysis: unsupervised learning via supervised learning with a non-convex penalty","authors":"W. Pan, Xiaotong Shen, Binghui Liu","doi":"10.5555/2567709.2567723","DOIUrl":"https://doi.org/10.5555/2567709.2567723","url":null,"abstract":"Clustering analysis is widely used in many fields. Traditionally clustering is regarded as unsupervised learning for its lack of a class label or a quantitative response variable, which in contrast is present in supervised learning such as classification and regression. Here we formulate clustering as penalized regression with grouping pursuit. In addition to the novel use of a non-convex group penalty and its associated unique operating characteristics in the proposed clustering method, a main advantage of this formulation is its allowing borrowing some well established results in classification and regression, such as model selection criteria to select the number of clusters, a difficult problem in clustering analysis. In particular, we propose using the generalized cross-validation (GCV) based on generalized degrees of freedom (GDF) to select the number of clusters. We use a few simple numerical examples to compare our proposed method with some existing approaches, demonstrating our method's promising performance.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129764561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Model of the Perception of Facial Expressions of Emotion by Humans: Research Overview and Perspectives","authors":"Aleix M. Martinez, Shichuan Du","doi":"10.5555/2503308.2343694","DOIUrl":"https://doi.org/10.5555/2503308.2343694","url":null,"abstract":"In cognitive science and neuroscience, there have been two leading models describing how humans perceive and classify facial expressions of emotion-the continuous and the categorical model. The continuous model defines each facial expression of emotion as a feature vector in a face space. This model explains, for example, how expressions of emotion can be seen at different intensities. In contrast, the categorical model consists of C classifiers, each tuned to a specific emotion category. This model explains, among other findings, why the images in a morphing sequence between a happy and a surprise face are perceived as either happy or surprise but not something in between. While the continuous model has a more difficult time justifying this latter finding, the categorical model is not as good when it comes to explaining how expressions are recognized at different intensities or modes. Most importantly, both models have problems explaining how one can recognize combinations of emotion categories such as happily surprised versus angrily surprised versus surprise. To resolve these issues, in the past several years, we have worked on a revised model that justifies the results reported in the cognitive science and neuroscience literature. This model consists of C distinct continuous spaces. Multiple (compound) emotion categories can be recognized by linearly combining these C face spaces. The dimensions of these spaces are shown to be mostly configural. According to this model, the major task for the classification of facial expressions of emotion is precise, detailed detection of facial landmarks rather than recognition. We provide an overview of the literature justifying the model, show how the resulting model can be employed to build algorithms for the recognition of facial expression of emotion, and propose research directions in machine learning and computer vision researchers to keep pushing the state of the art in these areas. We also discuss how the model can aid in studies of human perception, social interactions and disorders.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"50 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134362563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint estimation of multiple precision matrices with common structures","authors":"Wonyul Lee, Yufeng Liu","doi":"10.5555/2789272.2886784","DOIUrl":"https://doi.org/10.5555/2789272.2886784","url":null,"abstract":"Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132232550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}