{"title":"Ancient and Contemporary Industries Based on Alkali and Alkali-Earth Salts and Hydroxides: The Historical and Technological Review","authors":"R. Wasserman","doi":"10.5772/intechopen.99739","DOIUrl":"https://doi.org/10.5772/intechopen.99739","url":null,"abstract":"Although sodium, potassium, calcium, and magnesium were isolated as the chemical elements by Sir Humphry Davy for the first time at the beginning of the 19th century, alkali salts and hydroxides have been widely known and used since the very ancient time. The word “alcali” & “alkali” was borrowed in the 14th century by literary Roman-Germanic languages from Arabic al-qalī, al-qâly ou al-qalawi (), which means “calcinated ashes” of saltwort plants. These ashes are characterized nowadays as mildly basic. They have been widely used in therapy, cosmetics, and pharmacy in Mediaeval Europe and the Middle East. However, the consumption of these alkali containing ashes, as well as natron salts and calcined lime-based materials used for different customer purposes, like therapy, pharmacy, cosmetics, glass making, textile treating, dyes, brick making, binding materials, etc., was commonly known since the very ancient times. The current review of the archeological, historical, and technological data provides the readers with the scope of the different everyday life applications of alkali and alkali-earth salts and hydroxides from ancient times till nowadays. The review obviously reveals that many modern chemical manufacturing processes using alkali and alkali-earth salts and hydroxides have a very ancient history. In contrast, there has been a similarity of targets for implementing alkali and alkali-earth salts and hydroxides in everyday life, from the ancient past till the modern period. These processes are ceramic and glass making, binding materials in construction, textile treatment, metallurgy, etc. So, this review approves the common statement: “The Past is a clue for the Future.”","PeriodicalId":313991,"journal":{"name":"Ionic Liquids - Thermophysical Properties and Applications [Working Title]","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116331027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of Ionic Liquids in Gas Chromatography","authors":"U. Gazal","doi":"10.5772/INTECHOPEN.96702","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96702","url":null,"abstract":"The environment offers an enormous innovative panorama of prospects intended for the research of novel biodegradable diluents. Regular composites have been lately recycled to formulate the anionic and cationic fraction of RTIL. Numerous applications of ionic liquids have been explored in segregation discipline. Attributable to the extraordinary polarization as well as exceptional current steadiness, IL-centered immobile segments have been applied to resolution of varied series of critically stimulating complexes frequently extremely polar composites using great boiling points plus physical resemblances comprising elongated sequence fatty acids, essential oils, polycyclic aromatic sulfur heterocycles (PASHs) and PCBs. IL-centered immobile segments facilitated the gas chromatography study for effective as well as precise amount of liquid in the industrialized yields for example pharmaceutical as well as petrochemicals complexes.","PeriodicalId":313991,"journal":{"name":"Ionic Liquids - Thermophysical Properties and Applications [Working Title]","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116696162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. S. Vieira, Margarida L. Ferreira, P. Castro, J. Araújo, A. B. Pereiro
{"title":"Fluorinated Ionic Liquids as Task-Specific Materials: An Overview of Current Research","authors":"N. S. Vieira, Margarida L. Ferreira, P. Castro, J. Araújo, A. B. Pereiro","doi":"10.5772/INTECHOPEN.96336","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96336","url":null,"abstract":"This chapter is focused on the massive potential and increasing interest on Fluorinated Ionic Liquids (FILs) as task-specific materials. FILs are a specific family of ionic liquids, with fluorine tags equal or longer than four carbon atoms, that share and improve the properties of both traditional ionic liquids and perfluoro surfactants. These compounds have unique properties such as three nanosegregated domains, a great surfactant power, chemical/biological inertness, easy recovery and recyclability, low surface tension, extreme surface activity, high gas solubility, negligible vapour pressure, null flammability, and high thermal stability. These properties allied to the countless possible combinations between cations and anions allow the design and development of FILs with remarkable properties to be used in specific applications. In this review, we highlight not only the unique thermophysical, surfactant and toxicological properties of these fluorinated compounds, but also their application as task-specific materials in many fields of interest, including biomedical applications, as artificial gas carries and drug delivery systems, as well as solvents for separations in engineering processes.","PeriodicalId":313991,"journal":{"name":"Ionic Liquids - Thermophysical Properties and Applications [Working Title]","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121833818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ionic Liquids as High-Performance Lubricants and Lubricant Additives","authors":"Hong Guo, Patricia Iglesias Victoria","doi":"10.5772/INTECHOPEN.96428","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96428","url":null,"abstract":"Taking into account the environmental awareness and ever-growing restrictive regulations over contamination, the study of new lubricants or lubricant additives with high performance and low toxicity over the traditional lubes to reduce the negative impact on the environment is needed. In this chapter, the current literature on the use of ionic liquids, particularly protic ionic liquids, as high-performance lubricants and lubricant additives to different types of base lubricants are reviewed and described. The relation between ionic liquids structures and their physicochemical properties, such as viscosity, thermal stability, corrosion behavior, biodegradability, and toxicity, is elaborated. Friction reduction and wear protection mechanisms of the ionic liquids are discussed with relation to their molecular structures and physicochemical properties.","PeriodicalId":313991,"journal":{"name":"Ionic Liquids - Thermophysical Properties and Applications [Working Title]","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127712443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. I. Abu-eishah, S. Elsuccary, Thikrayat Al-Attar, Asia A. Khanji, H. P. Butt, Nourah M. Mohamed
{"title":"Production of 1-Butyl-3-Methylimidazolium Acetate [Bmim][Ac] Using 1-Butyl-3-Methylimidazolium Chloride [Bmim]Cl and Silver Acetate: A Kinetic Study","authors":"S. I. Abu-eishah, S. Elsuccary, Thikrayat Al-Attar, Asia A. Khanji, H. P. Butt, Nourah M. Mohamed","doi":"10.5772/INTECHOPEN.96569","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96569","url":null,"abstract":"Since most of the literature alternatives used to produce the ionic liquid 1-butyl-3-methylimidazolium acetate [Bmim][Ac] are very slow and require different solvents, we have used in this work a new process to produce the [Bmim][Ac] by the reaction of the ionic liquid 1-butyl-3-methylimidazolium chloride [Bmim]Cl with silver acetate (AgAc) where silver chloride (AgCl) precipitates as a by-product. The genuine experimental work and kinetic analyses presented here indicate that the reaction rate constant k = 7.67x1012 e(−79.285/RT). That is, the Arrhenius constant k o = 7.67x1012 L/mol.s and the activation energy E a = 79.285 kJ/mol. The very high value of the Arrhenius constant indicates that the reaction of [Bmim]Cl with silver acetate to produce [Bmim][Ac] and silver chloride is extremely fast.","PeriodicalId":313991,"journal":{"name":"Ionic Liquids - Thermophysical Properties and Applications [Working Title]","volume":"13 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124623132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Group of Uniform Materials Based on Organic Salts (GUMBOS): A Review of Their Solid State Properties and Applications","authors":"Rocío L. Pérez, C. Ayala, I. Warner","doi":"10.5772/INTECHOPEN.96417","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96417","url":null,"abstract":"Ionic liquids (ILs) are defined as organic salts with melting points below 100 °C. Such ionic compounds are typically formed using bulky cations and/or bulky anions in order to produce liquids or lower melting solids. ILs have been widely explored in several research areas including catalysis, remediation, solvents, separations, and many others. The utility of such compounds has also been recently broadened to include solid phase ionic materials. Thus, researchers have pushed the boundaries of ILs chemistry toward the solid state and have hypothesized that valuable properties of ILs can be preserved and fine-tuned to achieve comparable properties in the solid state. In addition, as with ILs, tunability of these solid-phase materials can be achieved through simple counterion metathesis reactions. These solid-state forms of ILs have been designated as a group of uniform materials based on organic salts (GUMBOS). In contrast to ILs, these materials have an expanded melting point range of 25 to 250 °C. In this chapter, we focus on recent developments and studies from the literature that provide for fine tuning and enhancing properties through transformation and recycling of diverse ionic compounds such as dyes, antibiotics, and others into solid state ionic materials of greater utility.","PeriodicalId":313991,"journal":{"name":"Ionic Liquids - Thermophysical Properties and Applications [Working Title]","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123041438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}