{"title":"On the Multiscale Landau-Lifshitz-Gilbert Equation: Two-Scale Convergence and Stability Analysis","authors":"Jingrun Chen, Rui Du, Zetao Ma, Z. Sun, Lei Zhang","doi":"10.1137/21m1438177","DOIUrl":"https://doi.org/10.1137/21m1438177","url":null,"abstract":"","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127432436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable Basis Expansion for Multiphase Flow Problems","authors":"Yating Wang, W. Leung, Guang Lin","doi":"10.1137/21m1405289","DOIUrl":"https://doi.org/10.1137/21m1405289","url":null,"abstract":"In this work, we propose an adaptive sparse learning algorithm that can be applied to learn the physical processes and obtain a sparse representation of the solution given a large snapshot space. Assume that there is a rich class of precomputed basis functions that can be used to approximate the quantity of interest. We then design a neural network architecture to learn the coefficients of solutions in the spaces which are spanned by these basis functions. The information of the basis functions are incorporated in the loss function, which minimizes the differences between the downscaled reduced order solutions and reference solutions at multiple time steps. The network contains multiple submodules and the solutions at different time steps can be learned simultaneously. We propose some strategies in the learning framework to identify important degrees of freedom. To find a sparse solution representation, a soft thresholding operator is applied to enforce the sparsity of the output coefficient vectors of the neural network. To avoid over-simplification and enrich the approximation space, some degrees of freedom can be added back to the system through a greedy algorithm. In both scenarios, that is, removing and adding degrees of freedom, the corresponding network connections are pruned or reactivated guided by the magnitude of the solution coefficients obtained from the network outputs. The proposed adaptive learning process is applied to some toy case examples to demonstrate that it can achieve a good basis selection and accurate approximation. More numerical tests are performed on two-phase multiscale flow problems to show the capability and interpretability of the proposed method on complicated applications.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122079018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Online multiscale model reduction for nonlinear stochastic PDEs with multiplicative noise","authors":"Lijian Jiang, Mengnan Li, Meng Zhao","doi":"10.48550/arXiv.2204.11712","DOIUrl":"https://doi.org/10.48550/arXiv.2204.11712","url":null,"abstract":"In this paper, an online multiscale model reduction method is presented for stochastic partial differential equations (SPDEs) with multiplicative noise, where the diffusion coefficient is spatially multiscale and the noise perturbation nonlinearly depends on the diffusion dynamics. It is necessary to efficiently compute all possible trajectories of the stochastic dynamics for quantifying model's uncertainty and statistic moments. The multiscale diffusion and nonlinearity may cause the computation intractable. To overcome the multiscale difficulty, a constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) is used to localize the computation and obtain an effective coarse model. However, the nonlinear terms are still defined on a fine scale space after the Galerkin projection of CEM-GMsFEM is applied to the nonlinear SPDEs. This significantly impacts on the simulation efficiency by CEM-GMsFEM. To this end, a stochastic online discrete empirical interpolation method (DEIM) is proposed to treat the stochastic nonlinearity. The stochastic online DEIM incorporates offline snapshots and online snapshots. The offline snapshots consist of the nonlinear terms at the approximate mean of the stochastic dynamics and are used to construct an offline reduced model. The online snapshots contain some information of the current new trajectory and are used to correct the offline reduced model in an increment manner. The stochastic online DEIM substantially reduces the dimension of the nonlinear dynamics and enhances the prediction accuracy for the reduced model. Thus, the online multiscale model reduction is constructed by using CEM-GMsFEM and the stochastic online DEIM. A priori error analysis is carried out for the nonlinear SPDEs. We present a few numerical examples with diffusion in heterogeneous porous media and show the effectiveness of the proposed model reduction.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126996579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enriched Nonconforming Multiscale Finite Element Method for Stokes Flows in Heterogeneous Media Based on High-order Weighting Functions","authors":"Q. Feng, G. Allaire, P. Omnes","doi":"10.1137/21m141926x","DOIUrl":"https://doi.org/10.1137/21m141926x","url":null,"abstract":"","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126235198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephan Gärttner, P. Frolkovic, P. Knabner, N. Ray
{"title":"Efficiency of Micro-Macro Models for Reactive Two-Mineral Systems","authors":"Stephan Gärttner, P. Frolkovic, P. Knabner, N. Ray","doi":"10.1137/20m1380648","DOIUrl":"https://doi.org/10.1137/20m1380648","url":null,"abstract":"","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128446180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Consistency and the Monte Carlo Method for Semiconductor Boltzmann Equations with Multivalley","authors":"Jiachuan Cao, Li-qun Cao","doi":"10.1137/19m128750x","DOIUrl":"https://doi.org/10.1137/19m128750x","url":null,"abstract":"","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116052482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiscale Elliptic PDE Upscaling and Function Approximation via Subsampled Data","authors":"Yifan Chen, T. Hou","doi":"10.1137/20m1372214","DOIUrl":"https://doi.org/10.1137/20m1372214","url":null,"abstract":". There is an intimate connection between numerical upscaling of multiscale PDEs and scattered data approximation of heterogeneous functions: the coarse variables selected for deriving an upscaled equation (in the former) correspond to the sampled information used for approximation (in the latter). As such, both problems can be thought of as recovering a target function based on some coarse data that are either artificially chosen by an upscaling algorithm or determined by some physical measurement process. The purpose of this paper is then to study, under such a setup and for a specific elliptic problem, how the lengthscale of the coarse data, which we refer to as the subsampled lengthscale, influences the accuracy of recovery, given limited computational budgets. Our analysis and experiments identify that reducing the subsampling lengthscale may improve the accuracy, implying a guiding criterion for coarse-graining or data acquisition in this computationally constrained scenario, especially leading to direct insights for the implementation of the Gamblets method in the numerical homogenization literature. Moreover, reducing the lengthscale to zero may lead to a blow-up of approximation error if the target function does not have enough regularity, suggesting the need for a stronger prior assumption on the target function to be approximated. We introduce a singular weight function to deal with it, both theoretically and numerically. This work sheds light on the interplay of the lengthscale of coarse data, the computational costs, the regularity of the target function, and the accuracy of approximations and numerical simulations.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124909075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uniformly Accurate Nested Picard Iterative Integrators for the Nonlinear Dirac Equation in the Nonrelativistic Regime","authors":"Yongyong Cai, Yan Wang","doi":"10.1137/20m133573x","DOIUrl":"https://doi.org/10.1137/20m133573x","url":null,"abstract":"","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126441534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiscale Modeling of Sorption Kinetics","authors":"Clarissa Astuto, A. Raudino, G. Russo","doi":"10.1137/21m1463872","DOIUrl":"https://doi.org/10.1137/21m1463872","url":null,"abstract":"In this paper we propose and validate a multiscale model for the description of particle diffusion in presence of trapping boundaries. We start from a drift-diffusion equation in which the drift term describes the effect of bubble traps, and is modeled by a short range potential with an attractive term and a repulsive core. The interaction of the particles attracted by the bubble surface is simulated by the Lennard-Jones potential that simplifies the capture due to the hydrophobic properties of the ions. In our model the effect of the potential is replaced by a suitable boundary condition derived by mass conservation and asymptotic analysis. The potential is assumed to have a range of small size $varepsilon$. An asymptotic expansion in the $varepsilon$ is considered, and the boundary conditions are obtained by retaining the lowest order terms in the expansion. Another aspect we investigate is saturation effect coming from high concentrations in the proximity of the bubble surface. The validity of the model is carefully checked with several tests in 1D, 2D and different geometries.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124271285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}