A. Boltasseva, H. Reddy, U. Guler, Z. Kudyshev, S. Azzam, K. Chaudhuri, A. Kildishev, V. Shalaev
{"title":"Temperature-dependent plasmonic properties as a key to high-temperature nanophotonic designs (Conference Presentation)","authors":"A. Boltasseva, H. Reddy, U. Guler, Z. Kudyshev, S. Azzam, K. Chaudhuri, A. Kildishev, V. Shalaev","doi":"10.1117/12.2528748","DOIUrl":"https://doi.org/10.1117/12.2528748","url":null,"abstract":"","PeriodicalId":308796,"journal":{"name":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131161881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasmonic metasurfaces with tunable gap and collective SPR modes (Conference Presentation)","authors":"A. Pinchuk","doi":"10.1117/12.2528903","DOIUrl":"https://doi.org/10.1117/12.2528903","url":null,"abstract":"Optical properties of a plasmonic metasurface made of a monolayer of gold nanoparticles in close proximity to an aluminum thin film were studied numerically and experimentally. Extinction spectra of the plasmonic metasurface were studied as functions of the thickness of a dielectric spacer between the monolayer of gold nanoparticles and the aluminum film in the visible wavelength range. The goal was to study the excitation of a collective surface plasmon resonance (SPR) mode and a gap plasmon mode as well as their dependence on the spacer thickness, nanoparticles spacing and their size. By using finite-difference-time-domain (FDTD) calculations we find that the SPR extinction peak first red-shifts and then splits into two peaks. The first extinction peak is associated with the collective SPR mode of the monolayer and it shifts to shorter wavelengths as the spacer layer decreases. As the spacer layer decreases from 35 nm to 7.5 nm, the second peak gradually appears in the extinction spectra of the metasurface. We assign the second peak to the gap mode. The gap mode first appears at around 620 nm or greater and it shifts to larger wavelength for larger nanoparticle spacing and size. The FDTD simulations are confirmed by an examination of the dispersion curves of a similar multilayer system. The computational results match the experimental results and confirm the excitation of the two modes.","PeriodicalId":308796,"journal":{"name":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130064611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tunable plasmonics for wide wavelength range including deep UV using metal nano-hemisphere on mirror (Conference Presentation)","authors":"K. Okamoto","doi":"10.1117/12.2528337","DOIUrl":"https://doi.org/10.1117/12.2528337","url":null,"abstract":"Plasmonics has been studied and used for various optoelectronic applications include efficient light-emitting diodes (LEDs) [1]. Next important challenge is to develop device applications and to extend into wide wavelength regions [2]. Here, I present the new nanostructures and methods to tune the plasmonic resonances for wide wavelength range including deep UV. \u0000Recently, we observed unusual localized surface plasmon (LSP) resonance spectra that have a narrow bandwidth and high intensity by fabricating multilayered Ag nanoparticle sheet structures [3]. The peaks of the extinction spectra were clearly split into two peaks on metal substrates, while this phenomenon was not observed on a transparent substrate. This optical phenomenon should be due to the mode splitting effect by the strong coupling. The strong dipole oscillator located near the metal interface can interact with the mirror image of the dipole oscillator, which has the opposite phase. This presents a powerful and useful technique to tune the strong mode coupling effect without any lithographic structures. Quite recently, we also found the similar peak splitting and sharpened of the LSP spectra for random metal nano-hemispheres, fabricated by thermal annealing of metal thin layers, on metal substrates through thin SiO2 spacer layer. We call such structure nano-hemispheres on mirror (NHoM). The LSP spectra of Ag NHoM became much larger and sharper, and also tunable in UV to visible wavelength region by the spacer thickness of the structure. In order to extend this technique into deep UV region, we fabricated NHoM structures by using aluminum which has the LSP resonance in ultra-deep UV regions. We obtained very strong and sharp resonance peak due to the mode splitting effect by the strong coupling at 156 nm by the by the electromagnetic simulations. As far as we know, this is the LSP spectrum which has the shortest peak wavelength in ultra-deep-UV region. The similar LSP spectra in deep UV region were obtained by experiments and found to be well tunable by the thickness of the SiO2 spacers.\u0000I believe that our approaches using tunable plasmonics including Deep-UV region will bring high efficient plasmonic LEDs with practical use level and will develop future optic and photonic technologies for smart societies.\u0000 \u0000[1] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601 (2004). \u0000[2] K. Okamotoa, M. Funatob, Y. Kawakamib, K. Tamada, J. Photochem. Photobiol. C, 32, 58 (2017). \u0000[3] K. Okamoto, D. Tanaka, R. Degawa, X. Li, P. Wang, S. Ryuzaki, and K. Tamada, Sci. Rep. 6, 36165 (2016).","PeriodicalId":308796,"journal":{"name":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123623613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gate-tunable Epsilon-near-zero meta-structures (Conference Presentation)","authors":"Howard Lee","doi":"10.1117/12.2531446","DOIUrl":"https://doi.org/10.1117/12.2531446","url":null,"abstract":"The optical response of epsilon-near-zero (ENZ) materials has been a topic of significant interest in the last few years as the electromagnetic field inside media with near-zero permittivity has been shown to exhibit unique optical properties, including strong electromagnetic wave confinement, non-reciprocal magneto-optical effects, and abnormal nonlinearity. These ultrathin ENZ materials are promising for the enhancement of quantum emission for optical sensing and enhanced absorption/emittivity for energy harvesting. This talk will review our recent development on a gate-tunable conducting oxide epsilon-near-zero meta-structures. I will present our recent development on the use of gate-tunable materials, transparent conducting oxides, to demonstrate an electrically tunable ultrathin ENZ perfect absorber enabled by the excitation of ENZ mode. In addition, I will present the active control of emissive properties of quantum emitters and enhanced optical nonlinearity in hybrid ENZ-plasmonic heterostructures.","PeriodicalId":308796,"journal":{"name":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115876632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacial second harmonic nonlinearity in resonant nanostructures (Conference Presentation)","authors":"H. Hsiao, W. Tsai, Tsung Lin Chung, D. Tsai","doi":"10.1117/12.2528448","DOIUrl":"https://doi.org/10.1117/12.2528448","url":null,"abstract":"","PeriodicalId":308796,"journal":{"name":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114603393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}