{"title":"Quantum and Non-Quantum Formulation of Eye’s Adaptation to Light’s Intensity Increments","authors":"G. Scarel","doi":"10.4236/WJCMP.2019.93005","DOIUrl":"https://doi.org/10.4236/WJCMP.2019.93005","url":null,"abstract":"Context and background: A quantum formulation of vision in vertebrates was proposed in the early 1940s. The number of quanta useful for enabling vision was found. The time interval required for their absorption, however, was never specified. In the early 1950s, experimental data on the effects of light’s intensity increment on vision indicated that the quantum formulation is true only at low light’s intensities. In this case, a vaguely described signaling adaptation mechanism was invoked to explain the separation between vision at low and high intensities, accompanied by the switch from rod to cones as photoreceptors. Motivation: In this article, we want to prove the validity of the non-totally-quantum formulation and unveil the nature of the signaling adaptation mechanism. Hypothesis: To accomplish our proof, we hypothesize that the amount of energy transferred and conserved in light’s interaction with the eyes is given by the product of light’s intensity (or power) times its period. Method: We construct and use the plots of the trends of light’s intensity increments and the corresponding changes in the axon’s membrane capacitance versus adapting intensity. Results: We find that 1) the average solar light’s intensity is the critical value that separates low from high light’s intensity regimes in vision, and 2) changes in the capacitance of the axon’s membrane enable the signaling adaptation of vision when light’s intensity changes. Conclusions: We prove the validity of the non-totally-quantum formulation and unveil the nature of the signaling adaptation mechanism. Our proof is supported by the model based on light’s intensity times period as being the energy conserved in light-matter interaction This model suggests that 1) all the waves in the electromagnetic spectrum, at the correct intensity for each frequency, could be used to produce the effects of optogenetics in diagnostics and therapy, and 2) it takes seconds to minutes to see details in the dark when light is switched off.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"236 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123258355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fermi Energy-Incorporated Generalized BCS Equations for the Temperature-Dependent Critical Current Density and the Related Parameters of a Superconductor for All T ≤ Tc and Their Application to Aluminium Strips","authors":"G. P. Malik, V. S. Varma","doi":"10.4236/WJCMP.2019.93004","DOIUrl":"https://doi.org/10.4236/WJCMP.2019.93004","url":null,"abstract":"Presented here are the Generalized BCS Equations incorporating Fermi Energy for the study of the {Δ, Tc, jc(T)} values of both elemental and composite superconductors (SCs) for all T ≤ Tc, where Δ, Tc and jc(T) denote, respectively, one of the gap values, the critical temperature and the T-dependent critical current density. This framework, which extends our earlier study that dealt with the {Δ0, Tc, jc(0)} values of an SC, is also shown to lead to T-dependent values of several other related parameters such as the effective mass of electrons, their number density, critical velocity, Fermi velocity (VF), coherence length and the London penetration depth. The extended framework is applied to the jc(T) data reported by Romijn et al. for superconducting Aluminium strips and is shown not only to provide an alternative to the explanation given by them, but also to some novel features such as the role of the Sommerfeld coefficient γ(T) in the context of jc(T) and the role of VF(T) in the context of a recent finding by Plumb et al. about the superconductivity of Bi-2212.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129625105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Gallium Arsenide Thermal Expansion Coefficient by Extended X-Ray Absorption Fine Structure","authors":"G. Dieye, Sameh I. Ahmed, A. Wade, Djibril Diop","doi":"10.4236/WJCMP.2019.92003","DOIUrl":"https://doi.org/10.4236/WJCMP.2019.92003","url":null,"abstract":"Negative thermal expansion of gallium arsenide has been investigated through temperature dependent Extended X-ray Absorption Fine Structure (EXAFS) measurements. The bond thermal expansion coefficient αbond has been evaluated and compared to negative expansion coefficient αtens due to tension effects. The overall thermal expansion coefficient is the sum of αbond and αtens. Below 60 K, αtens is greater than αbond yielding to a negative expansion in this temperature region. Tension effects are progressively overcome by the stretching effects in the region 60 - 300 K. The asymmetry of nearest neighbors distribution is not negligible since the gaussian approximation underestimates the bond expansion by about 0.00426 A. This error decreases when the temperature is lowered. The accuracy in the thermal expansion evaluation and the connection between third cumulant and thermal expansion are discussed.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126232318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Super-Hydrides of Lanthanum and Yttrium: On Optimal Conditions for Achieving near Room Temperature Superconductivity","authors":"H. Otto","doi":"10.4236/WJCMP.2019.91002","DOIUrl":"https://doi.org/10.4236/WJCMP.2019.91002","url":null,"abstract":"Recently, many seminal papers deal with the syntheses, stability and superconducting properties of super-hydrides like LaH10 or YH10 under high pressure, reporting critical temperatures near room temperature. In the first run one will assume that the involved metal atoms contribute a number of 3 electrons to the pairing pool corresponding to their valence. However, another possibility may be that the cationic valence is somewhat smaller, for instance only 2.29, resulting in a nominal electron number per cation of σ0 = 0.229 ≈ 3/13 instead of 0.3. Then, we will have a numerical equality to the optimum hole number in the cuprate high-Tc superconductors, a number that reflects the fractal nature of electronic response in superconductors. However, if one still keeps up the oxidation state of +3 of lanthanum, one will need 13 hydrogen atoms to match the optimum σ0. Such composition may be found at the phase boundary between the observed LaH10 and LaH16 phases. Partial ionic replacement is suggested to shift the super-hydride composition into the σ0 optimum. Micro-structural phenomena such as multiple twinning and ferroelastic behavior as observed with cuprates may also influence the superconductivity of super-hydrides. Finally, epitaxial growth of super-hydrides onto a specially cut diamond substrate is proposed.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"220 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132577500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of Infrared Light’s Power on the Infrared Spectra of Thin Films","authors":"G. Scarel, E. Stevens","doi":"10.4236/wjcmp.2019.91001","DOIUrl":"https://doi.org/10.4236/wjcmp.2019.91001","url":null,"abstract":"There are numerous evidences that a relationship exists between the average power P of electromagnetic waves and the mechanical motion of the objects interacting with them. We investigate the effects of infrared (IR) light’s average power P on the transmission Fourier transform infrared (FTIR) spectra of thin cubic Yb2O3 and rhombohedral LaAlO3 films deposited on silicon via atomic layer deposition. We find that different values of P of the IR light displace the minima of the absorption bands. This effect is reproducible in different sets of experiments and in different spectrometers. To interpret the experimental findings, we use the law of conservation of energy. We find a correlation among the energy of the IR waves and the number, moment of inertia, and vibrational/rotational frequency of the bonds involved in the vibrational or rotational motion. The law of conservation of energy unveils that larger values of P of the IR light and lower wavenumbers of the resonances involve a larger number of crystal bonds. One practical application of our approach is that it suggests a way to improve the sensitivity of the FTIR spectra of thin crystalline films in the far IR region.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131799507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Violation of Cluster Property in Heisenberg Antiferromagnet","authors":"T. Munehisa","doi":"10.4236/WJCMP.2018.84015","DOIUrl":"https://doi.org/10.4236/WJCMP.2018.84015","url":null,"abstract":"There are concepts that are accepted in our daily life, but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In a paper recently published by the author, it has been pointed out that this cluster property violates in the correlation function of the spin operator for the spin 1/2 XXZ antiferromagnet on the square lattice. In this paper, we investigate the spin 1/2 Heisenberg antiferromagnet on the square lattice, which has SU(2) symmetry. In order to study the cluster property, we need to calculate the ground state accurately. For this purpose, we employ the effective model based on the magnetization of the sub-lattices. Then we can define the quasi-degenerate states to calculate the ground state. Including two kinds of interactions which break SU(2) symmetry into the Hamiltonian, we obtain the ground state quantitatively. We find that two kinds of spin correlation functions due to degenerate states are not zero when the lattice size is large but finite. The magnitude of one of them is the same as the one previously found in the XXZ antiferromagnet, while another one is much larger when the additional interaction is strong. We then conclude that in Heisenberg antiferromagnet correlation functions violate the cluster property and the magnitude of the violation qualitatively differs from the one in the XXZ antiferromagnet.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116693232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Soubane, M. E. Garah, Mohamed Bouhassoune, A. Tirbiyine, Abdel-Megid Ramzi, S. Laasri
{"title":"Hidden Information, Energy Dispersion and Disorder: Does Entropy Really Measure Disorder?","authors":"D. Soubane, M. E. Garah, Mohamed Bouhassoune, A. Tirbiyine, Abdel-Megid Ramzi, S. Laasri","doi":"10.4236/WJCMP.2018.84014","DOIUrl":"https://doi.org/10.4236/WJCMP.2018.84014","url":null,"abstract":"Despite its appearance in physics around the 1850th, the second law of thermodynamics is still attracting more efforts to be clarified. More specifically, fifteen years later (1865) after its definition and introduction, entropy has been the subject of various interpretations. Hence, in physical sciences and notably in different education levels, its concept seems to be relatively tough to unambiguous decipher. In this work, we re-introduce the notion of entropy from classical, quantum and information theories viewpoints. The controversial over entropy and a measure of disorder misconception, stated by many scientists, is addressed as well to come up with less confusing physical interpretation of entropy. Hence, over time, an increase of entropy, a quantitative quantity, is most often associated to a rising of disorder, a non-quantitative quantity and no value-returning mathematical equation, rather than a continuously increasing of hidden data. In other words, linking disorder to hidden data is typically raising more confusion than clarification. Here, we shed more light on both concepts to find out an acceptable interpretation of entropy.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126762442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Gueye, H. Diallo, Attoumane Kosso Mamadou Moustapha, Youssou Traoré, Ibrahima Diatta, G. Sissoko
{"title":"Ac Recombination Velocity in a Lamella Silicon Solar Cell","authors":"M. Gueye, H. Diallo, Attoumane Kosso Mamadou Moustapha, Youssou Traoré, Ibrahima Diatta, G. Sissoko","doi":"10.4236/wjcmp.2018.84013","DOIUrl":"https://doi.org/10.4236/wjcmp.2018.84013","url":null,"abstract":"The silicon solar cell with series-connected vertical junction is studied with different lamella widths—the expression of the ac recombination velocity of the excess minority carrier at the back surface is established. Spectroscopy technique reveals dominated impact of the lamella widths of the base.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127353228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interaction in the Steady State between Electromagnetic Waves and Matter","authors":"A. L. Gordon, G. Scarel","doi":"10.4236/wjcmp.2018.84012","DOIUrl":"https://doi.org/10.4236/wjcmp.2018.84012","url":null,"abstract":"It is common experience that our eyes do not perceive significant changes in color when we observe for long time an object continuously exposed to light. We always see plants to be green in summer until in autumn factors external to our vision, such as changes in the length of daylight and temperature, cause the break-down of chlorophyll and, in turn, spectacular changes in plant’s colors. Likewise, the photocurrent produced in solar panels or field effect transistors achieves a steady state magnitude shortly after the start of the illumination. The steady state photocurrent lasts until the illumination stops. Understanding the origin of the steady state response of a device or light harvesting (LH) system to illumination with electromagnetic (EM) waves motivates the research presented in this work. In our experiments, we used capacitors as LH systems and illuminated them with infrared (IR) light over an 80 hours time period. We investigated the interaction between light and matter by monitoring versus time the voltage output of the capacitors. By combining modeling and experimental observations, we concluded that the steady state voltage is established soon after the start of the illumination as the consequence of the law of conservation of energy. We also found that the magnitude of the voltage in the steady state depends on the power and period of the illuminating IR light, and on the capacitance of the capacitor. When light’s power undergoes fluctuations, also the voltage produced by the capacitor and the surface charge density on the capacitors do so. These findings suggest that the law of conservation of energy has a significant repercussion when light is absorbed by matter in the steady state, for example in the mechanism of vision in vertebrates. Likewise, these findings are true when light is emitted from matter, for example in the mechanism of formation of the Cosmic Microwave Background (CMB).","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114578832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model of Cubic Cell for Description of Some Phase Transitions in Crystals","authors":"V. Kozlovskiy","doi":"10.4236/wjcmp.2018.84011","DOIUrl":"https://doi.org/10.4236/wjcmp.2018.84011","url":null,"abstract":"The purpose of the research is to develop a dynamical theory of phase transitions in crystalline structures, when except for temperature, the pressure is acting. So, the phase diagram temperature-pressure (dimensions) must be constructed. In general case, it is a complicated question, which can be solved for simple models of crystal, as three atomic models, introduced in the work of Frenkel [1]. In this model, three identical atoms are placed on the straight line and interact with the forces, which can be described by the expression, given in the article of Lennard-Jones [2]. Such simple model may have success, when the crystalline structure is simple, which consists of one type of atoms, for example: carbon. The model was generalized to cubic cell model with a moving atom in the inner part of the cell. The rigorous calculation of phase diagram for transition graphite-diamond shows some similarity with results of numerous experimental investigations (which are not discussed here). So, the way of phase diagram calculation may attract attention.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115637981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}