Emile Niringiyimana, Sun WanQuan, Giovanni Dushimimana
{"title":"Feasibility Study of a Hybrid PV/Hydro System for Remote Area Electrification in Rwanda","authors":"Emile Niringiyimana, Sun WanQuan, Giovanni Dushimimana","doi":"10.1155/2022/4030369","DOIUrl":"https://doi.org/10.1155/2022/4030369","url":null,"abstract":"Rwanda is among the least developed countries on the globe with total access to electricity not exceeding 63%, where the rest of the population lives in areas with no access to electricity. One such a place, which is the focus of this research, is Musanze district (1.4919 S, 29.5572 E), where 60% of the population in this area are located in remote areas, which makes the task of their electrification via grid system very difficult. Micro hydropower has been developed so far to reduce the deficit of energy access in this area. However, the power generated is not enough to cover the area, and the major problem is the decrease in river water level in the dry season, which affects the power generation. In this work, the feasibility of a hybrid PV/hydroelectric supply system is studied and optimized to increase the number of homes accessing electricity in this area. A 200 kW Mutobo micro hydro system in Musanze district under operation is considered a case study where a 100 kW PV array tied to the micro hydropower system is designed. The optimized PV-hydro hybrid system was proposed using a modified \u0000 \u0000 P\u0000 \u0000 and O MPPT algorithm to enhance the PV-generated power. The model was designed and simulated using MATLAB/Simulink, and data recorded from Mutobo micro hydropower station, Rwanda Energy Group, and National Meteorological Agency were used to estimate solar energy potentials. The results showed that the hybrid PV/hydro system is feasible and effectively contributes to the power shortage mitigation in remote areas during the dry season.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43933522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rogers Kipkoech, M. Takase, Ernest Kofi Amankwa Afrifa
{"title":"Renewable Energies in Ghana in Relation to Market Condition, the Environment, and Food Security","authors":"Rogers Kipkoech, M. Takase, Ernest Kofi Amankwa Afrifa","doi":"10.1155/2022/8243904","DOIUrl":"https://doi.org/10.1155/2022/8243904","url":null,"abstract":"Energy is essential to the development of a country, and several studies have been carried out on the production and use of energy by industrialised countries. However, little research and development has been carried out in developing countries on renewable energy. Also, the importance of traditional fuels such as biomass has not been emphasised in developing countries like Ghana, which rely on fossil fuels. Ghana relies heavily on imported petroleum fuel obtained from fossil fuels. However, fossil fuels are faced with many limitations including environmental pollution and an escalating price. Hydropower, biomass, biofuel, wind, and solar energy are the major renewable energy resources expected to be fully exploited in the future. This study, therefore, assesses the sources of the main renewable energy in relation to policy, the conditions of the market and food security. The government of Ghana has put in place a favourable business environment for the renewable energy sector by setting explicit feed-in tariffs (FITs). In addition, various acts and legislation have been passed and formulated by the relevant institutions (Renewable Energy Act (832) of 2011). The study revealed that there is an increase in the exploitation and use of energy from renewable resources when compared with the past decades. However, this exploitation is still limited due to barriers such as the cost of technologies, financing issues, and scientific and technical barriers.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42809649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamis A. Mrope, Yusufu Abeid Chande Jande, T. Kivevele
{"title":"A Review on Computational Fluid Dynamics Applications in the Design and Optimization of Crossflow Hydro Turbines","authors":"Hamis A. Mrope, Yusufu Abeid Chande Jande, T. Kivevele","doi":"10.1155/2021/5570848","DOIUrl":"https://doi.org/10.1155/2021/5570848","url":null,"abstract":"In recent years, advances in using computational fluid dynamics (CFD) software have greatly increased due to its great potential to save time in the design process compared to experimental testing for data acquisition. Additionally, in real-life tests, a limited number of quantities are measured at a time, while in a CFD analysis all desired quantities can be measured at once, and with a high resolution in space and time. This article reviews the advances made regarding CFD modeling and simulation for the design and optimization of crossflow hydro turbines (CFTs). The performance of these turbines depends on various parameters like the number of blades, tip speed ratio, type of airfoil, blade pitch, chord length and twist, and its distribution along the blade span. Technical aspects of the model design, which include boundary conditions, solution of the governing equations of the water flow through CFTS, and the assumptions made during the simulations are thoroughly described. From the review, a clear idea on the suitability of the accuracy CFD applications in the design and optimization of crossflow hydro turbines has been provided. Therefore, this gives an insight that CFD is a useful and effective tool suitable for the design and optimization of CFTs.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45616468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Analysis of Clear Sky Global Horizontal Irradiance Models: Simple Models Adapted for Local Conditions","authors":"N. Kwarikunda, Z. Chiguvare","doi":"10.1155/2021/4369959","DOIUrl":"https://doi.org/10.1155/2021/4369959","url":null,"abstract":"Evaluation of the maximum solar energy potential of a given area for possible deployment of solar energy technologies requires assessment of clear sky solar irradiance for the region under consideration. Such localized assessment is critical for optimal sizing of the technology to be deployed in order to realize the anticipated output. As the measurements are not always available where they are needed, models may be used to estimate them. In this study, three different models were adapted for the geographical location of the area under study and used to estimate clear sky global horizontal irradiance (GHI) at three locations in the subtropical desert climate of Namibia. The three models, selected on the basis of input requirements, were used to compute clear sky GHI at Kokerboom, Arandis, and Auas. The models were validated and evaluated for performance using irradiance data measured at each of the sites for a period of three years by computing statistical parameters such as mean bias error (MBE), root mean square error (RMSE), and the coefficient of determination (R2), normalized MBE, and normalized RMSE. Comparative results between modelled and measured data showed that the models fit well the measured data, with normalized root mean square error values in the range 4–8%, while the R2 value was above 98% for the three models. The adapted models can thus be used to compute clear sky GHI at these study areas as well as in other regions with similar climatic conditions.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43149881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design, Construction, and Evaluation of the Performance of Dual-Axis Sun Trucker Parabolic Solar Cooker and Comparison of Cooker","authors":"Solomon Tibebu, Arkbom Hailu","doi":"10.1155/2021/8944722","DOIUrl":"https://doi.org/10.1155/2021/8944722","url":null,"abstract":"Energy demand is increasing due to population increment and industrialization. To meet this energy demand, technologies that use renewable energy such as solar energy are being developed. A parabolic solar cooker is one of the main solar cookers, which can cook food and boil water at a high temperature within a short period. This study aimed to design, construct, and evaluate the performance of the constructed parabolic solar cookers. Moreover, this study aimed to compare the constructed cooker with firewood, charcoal, kerosene, and electricity in terms of cooking time and energy cost. The cooker was constructed using different materials such as old satellite dishes, tyres, steel, and aluminum foil. The aperture diameter, aperture area, receiver diameter, receiver area, depth of the parabola, focal length, rim angle, circumference of the circle, surface area, length of the circumference, and concentration of the cooker were 1.8 m, 2.54 m2, 0.16 m, 0.02 m2, 0.3 m, 0.67 m, 67.38°, 5.76 m, 2.81 m2, 5.76 m, and 123.46, respectively. The cooker can track the sun from north to south and from east to west. The performance of the cooker was evaluated by calculating the efficiency and power. The output energy, input energy, and average upcoming solar radiation of the constructed parabolic solar cooker were 0.182 kW/m2, 1.691 kW/m2, and 0.665 kW/m2, respectively. The efficiency and power of the cooker were 10.75% and 0.3 kW/hr, respectively. The constructed parabolic solar cooker relatively showed better performance in cooking different foods. A family, which has five members, was considered to compare the constructed cooker with other fuels in terms of energy cost of cooking. Since the parabolic solar cooker does not have any energy cost, it can save the energy cost of cooking foods. Therefore, parabolic solar cookers have a great advantage for developing countries including Ethiopia.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42540125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solvent Extraction of Jatropha Oil for Biodiesel Production: Effects of Solvent-to-Solid Ratio, Particle Size, Type of Solvent, Extraction Time, and Temperature on Oil Yield","authors":"J. Ntalikwa","doi":"10.1155/2021/9221168","DOIUrl":"https://doi.org/10.1155/2021/9221168","url":null,"abstract":"The aim of this study was to examine the effects of solvent-to-solid ratio, particle size, extraction time, and temperature on the extraction of Jatropha oil using three organic solvents, i.e., n-hexane, petroleum ether, and ethanol. The Soxhlet extraction method was used, and the parameters were varied in the following ranges: extraction temperature of 24–80°C, extraction time of 2 to 8 h, solvent-to-solid ratio of 4 : 1 to 7 : 1, and particle size of 0.5–0.8 mm. After obtaining optimal conditions, a large volume of Jatropha oil was prepared, purified, and subjected to analysis of quality parameters. It was found that the oil content of the Jatropha curcas L. seeds used was 48.2 ± 0.12% w/w. The highest oil yield of 47.5 ± 0.11% w/w corresponding to an oil recovery of 98.6 ± 0.3% w/w was obtained with n-hexane under the following conditions: solvent-to-solid ratio of 6 : 1, particle size of 0.5–0.8 mm, extraction time of 7 h, and extraction temperature of 68°C. This was followed by that of petroleum ether (46.2 ± 0.15% w/w) and lastly by ethanol (43 ± 0.18% w/w). The quality parameters of the oil extracted compared favorably well with most of the values reported in the literature, suggesting that the oil was of good quality for biodiesel production. Environmental and safety concerns over the use of hexane pose a great challenge. Thus, ethanol, which is environmentally benign, is recommended for application. The conditions for ethanol extraction that gave high oil yield were as follows: extraction temperature of 70°C, extraction time of 7 h, solvent-to-solid ratio of 6 : 1, particle size of 0.5–0.8 mm, and oil yield of 43 ± 0.18% w/w corresponding to an oil recovery of 89.2 ± 0.4% w/w.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42714566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. S. Hussain, S. Riaz, Ghazi Aman Nowsherwan, Khizer Jahangir, Akram Raza, M. Iqbal, I. Sadiq, Syed Mutahir Hussain, S. Naseem
{"title":"Numerical Modeling and Optimization of Lead-Free Hybrid Double Perovskite Solar Cell by Using SCAPS-1D","authors":"S. S. Hussain, S. Riaz, Ghazi Aman Nowsherwan, Khizer Jahangir, Akram Raza, M. Iqbal, I. Sadiq, Syed Mutahir Hussain, S. Naseem","doi":"10.1155/2021/6668687","DOIUrl":"https://doi.org/10.1155/2021/6668687","url":null,"abstract":"<jats:p>The highest power conversion efficiency (PCE) for organic-inorganic perovskite solar cells based on lead is reported as 25.2% in 2019. Lead-based hybrid perovskite materials are used in several photovoltaics applications, but these are not highly favored due to the toxicity of lead and volatility of organic cations. On the other hand, hybrid lead-free double perovskite has no such harm. In this research study, SCAPS numerical simulation is utilized to evaluate and compare the results of perovskite solar cell based on double perovskite <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\u0000 <msub>\u0000 <mrow>\u0000 <mfenced open=\"(\" close=\")\" separators=\"|\">\u0000 <mrow>\u0000 <mtext>FA</mtext>\u0000 </mrow>\u0000 </mfenced>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msub>\u0000 <msub>\u0000 <mrow>\u0000 <mtext>BiCuI</mtext>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>6</mn>\u0000 </mrow>\u0000 </msub>\u0000 </math>\u0000 </jats:inline-formula> and standard perovskite <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\u0000 <msub>\u0000 <mrow>\u0000 <mtext>CH</mtext>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 </msub>\u0000 <msub>\u0000 <mrow>\u0000 <mtext>NH</mtext>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 </msub>\u0000 <msub>\u0000 <mrow>\u0000 <mtext>PbI</mtext>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 </msub>\u0000 </math>\u0000 </jats:inline-formula> as an active layer. The results show that the power conversion efficiency obtained in the case of <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\u0000 <msub>\u0000 <mrow>\u0000 <mfenced open=\"(\" close=\")\" separators=\"|\">\u0000 <mrow>\u0000 <mtext>FA</mtex","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46576568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Microalgae as a Renewable Source of Energy: A Niche Opportunity","authors":"Journal of Renewable Energy","doi":"10.1155/2021/9813285","DOIUrl":"https://doi.org/10.1155/2021/9813285","url":null,"abstract":"<jats:p />","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43043770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum #2 to “Institutional and Policy Assessment of Renewable Energy Sector in Afghanistan”","authors":"A. Ershad","doi":"10.1155/2020/2962473","DOIUrl":"https://doi.org/10.1155/2020/2962473","url":null,"abstract":"<jats:p />","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/2962473","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46051655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Bajracharya, S. Shakya, Ashesh Babu Timilsina, J. Dhakal, S. Neupane, Ankit Gautam, Anil Sapkota
{"title":"Effects of Geometrical Parameters in Gravitational Water Vortex Turbines with Conical Basin","authors":"T. Bajracharya, S. Shakya, Ashesh Babu Timilsina, J. Dhakal, S. Neupane, Ankit Gautam, Anil Sapkota","doi":"10.1155/2020/5373784","DOIUrl":"https://doi.org/10.1155/2020/5373784","url":null,"abstract":"Gravitational Water Vortex Power Plant (GWVPP) is an appropriate means to convert kinetic energy of water to rotational mechanical energy at the very low head site. This study aims to establish a basic reference for the design of the runner for the Gravitational Water Vortex Turbine (GWVT) with a conical basin. Seven different geometrical parameters have been identified for runner design, and the effect of these parameters on the system efficiency has been studied numerically and experimentally. The effect of these parameters has been studied over the range of speed with torque. The results from performance tests of these runners suggest that runner height is the most significant parameter to be considered in the design of a turbine runner for GWVPP with a conical basin. The results show that the efficiency of GWVT has improved up to 47.85% as obtained from experiments.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/5373784","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45767555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}