Industrial Power Systems with Distributed and Embedded Generation最新文献

筛选
英文 中文
Motor control and protection, drives, and applications 电机控制和保护,驱动器和应用
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_ch8
R. Belu
{"title":"Motor control and protection, drives, and applications","authors":"R. Belu","doi":"10.1049/PBPO096E_ch8","DOIUrl":"https://doi.org/10.1049/PBPO096E_ch8","url":null,"abstract":"Electric motors are used in a vast range of applications, types, shapes, sizes, or constructions. In our power systems, the generators in power plants are connected to a three-phase network while most of the industrial equipment and largeor medium-size electric motors, pumps in heating, water and air conditioning systems, refrigerator, dryers, vacuum cleaner or most of the appliances are connected to a single phase AC, switched on or off by simple contactors. In cars, a DC battery is providing power to the starter motor, windshield wiper motors, and other car subsystems. The DC car motors are usually activated by a relay switch without any control. However, many of other electric motor applications often require advanced control, depending on the application and the load requirements. Motor protection and control are essential functions for proper operation and safeguard electric motors and their connection cables from the effects and/or damages caused by overheating or improper motor operation. For example, overload, stalling, and single-phasing result in overheating, and the motor protection must detect these conditions and prevent their effects. Electric motors are the major prime-mover in industrial and commercial facilities and in building electrical, mechanical, and thermal systems. Most of the electric losses occur in the end user, and electric machines and drives are a large contributor. Electric motors and drives are important electrical system components, being the interface between the electrical and mechanical systems in an industrial process, a building, industrial, or commercial facility. These are creating unique challenges for motor control and protection which, in turn, led to the solutions that are critical in all electrical motor applications. By completing this chapter, the readers must have a good understanding of the electric motor control, starting, stopping, speed changes, breaking, and motor protection methods. It is very important to understand motor characteristics, in order to choose the right one for the application requirements. The learning objectives for this chapter include understanding the basic principles of operation of AC and DC motors, understand their operation and basic characteristics, control and protection methods and schemes, compute their electrical and mechanical parameters using the equivalent circuit, and to be able to select the most appropriate electric motor for a specific application. Readers must also understand and learn the structure, configurations, characteristics, and the operation of electric drives and their major applications. The chapter also includes appropriate references to the electric motor specifications of the codes and standards.","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114227692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Distributed generation, microgrids, thermal energy storage, and micro-combine heat and power generation 分布式发电、微电网、热储能、微热电联产
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_CH12
R. Belu
{"title":"Distributed generation, microgrids, thermal energy storage, and micro-combine heat and power generation","authors":"R. Belu","doi":"10.1049/PBPO096E_CH12","DOIUrl":"https://doi.org/10.1049/PBPO096E_CH12","url":null,"abstract":"Energy sustainability is the cornerstone to the health and competitiveness of the industries in our global economy. It is more than being environmentally responsible, means the ability to utilize and optimize multiple sources of secure and affordable energy for the enterprises, and then continuously improve the utilization through systems analysis, energy diversification, conservation, and intelligent use of these resources. Distributed energy resources (DER) and dispersed generation systems are becoming more important in the future electricity generation. A description of distributed energy resource and types, characteristics, performances, is the subject of this chapter. Brief presentations of the power system interfaces, power electronics, and control of distributed generation systems are also included. The chapter presents an overview of the key issues concerning the integration of distributed and dispersed generation systems, the role of thermal energy storage (TES) systems and the main applications. A synopsis of the main challenges and issues that must be overcome in the process of DG and DER applications and integration are presented. Particular emphasis is placed on the need to move away from the fit and forget approach of connecting DG to electric power systems to a policy of integrating DG into power system planning and operation through active management of distribution networks and application of other novel concepts. Several distributed energy systems, together with energy storage capabilities, expected to have a significant impact on the energy market are presented and discussed. Microgrid is a new approach of power generation and delivery system that considers DG, DER, and loads, often controllable loads is set as a small controllable subsystem of a power distribution network. The microgrid subsystem has characteristics, such as the ability to operate in parallel or in isolation from the electrical grid, having the capabilities and functionalities to improve service and power quality, reliability, and operational optimality. Microgrids may also be described as a self-contained subset of indigenous generation, distribution system assets, protection and control capabilities, and end user loads that may be operated in either a utility connected mode or in an isolated from the utility mode. In addition to providing reliable electric power supply, microgrids are also capable of providing a wide array of ancillary services, such as voltage support, frequency regulation, harmonic cancellation, power factor correction, spinning, and nonspinning reserves. A microgrid may be intrinsically distributive in nature including several DGs-both renewable and conventional sourced energy storage elements, protection systems, end user loads, and other elements. In order to achieve a coordinated performance of a microgrid (or several microgrids) within the scope of a distribution company, it is required to perform distributed or cooperative control. T","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132608403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Introduction, review of electric circuits 介绍、复习电路
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_CH1
R. Belu
{"title":"Introduction, review of electric circuits","authors":"R. Belu","doi":"10.1049/PBPO096E_CH1","DOIUrl":"https://doi.org/10.1049/PBPO096E_CH1","url":null,"abstract":"Power systems are undergoing significant changes in terms of how they are operated, how electricity is generated and transferred to the users, and how the consumers interact and participate with the power systems. The main focus of this book is to provide the engineers, students, or interested readers with the essential knowledge of the power and energy systems, as well as main energy technologies including how they work and operate, and how they are evaluated and selected for specific applications. The purpose of this chapter is to introduce the engineers, students, or interested readers to the contemporary energy system issues and challenges, and brief the historical perspective of the power system evolution. The sections of this chapter are giving a quite comprehensive description of electric circuit theorems and solutions methods, direct current (DC) and alternative current (AC) circuits, power in AC circuits, and other important issues, terms, and definitions. The last section of the chapter gives a brief summary of the unit system and measurements. Several examples are included in sections to help in better understanding of the chapter. The reader must be fully aware that good understanding of DC and AC circuit theorems and solving methods, power in AC circuits, and the measurements and units are vital for the understanding of power and energy systems, analysis, design, operation, and management of these systems. These are the chapter objectives, goals, and aims. The chapter may be useful and recommended even for the readers who are fully familiar with the topics of the chapter.","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124940605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building electrical systems and industrial power distribution 建筑电气系统和工业配电
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_ch6
R. Belu
{"title":"Building electrical systems and industrial power distribution","authors":"R. Belu","doi":"10.1049/PBPO096E_ch6","DOIUrl":"https://doi.org/10.1049/PBPO096E_ch6","url":null,"abstract":"The utilization of energy resources is considered one of the most challenging tasks, while finding the most optimal, proper, and efficient ways to effectively use these important resources is an essential ingredient of sustainable development. In any electrical system, power must be transferred from the service equipment to the lights, machines, electrical motors, equipment, appliances, and electrical outlets. Regardless of the wiring methods used, the electricity carrying conductors and cables fall into one of two categories: feeders or branch-circuit conductors. Important aspects of the electrical system design involve building electrical service, service entrance, branch circuits, feeders, panel-boards, switchboards, switchgears, and load centers, and the calculations and sizing of their associate equipment and devices, as well as the protection devices and conductors. Panel-boards, switchboards, feeders and branch circuits, and associated fittings and devices are important components of the power distribution inside the buildings, industrial, and commercial facilities. Cables are usually contained in raceways, conduits, ducts, or cable trays, protecting them from mechanical damage and influences of other cables. In addition to structural requirements, when designing cable tray systems, the electrical requirements must also be carefully considered, as well as to be complaint to the specifications and requirements of the codes and standards. Often the design information is presented in the form of cabling diagrams, an important communication tool between designer, engineers, and technicians. In order to properly develop cabling diagrams requires in-depth understanding of the NEC, codes and standards regarding branch circuits, feeders, loading receptacles and outlets, switching requirements, and specifications, etc. This chapter is exploring the characteristics of electrical service, feeders, and branch circuits. It introduces the design elements, code and standard requirements, and specifications for service entrance, and inside the utility metering practices. An important aspect of the electrical and industrial power system design involve the calculation and design of branch circuits and feeders to supply various loads in a given occupancy and facility. The general purpose of a conduit, duct, or a raceway is to provide a clear and protected pathway for a cable, or for smaller conduits (inner ducts). Advances in cable technologies, costs of repairing sensitive cable materials or to replace the cables as needed have driven preferences for protective conduits over direct cable burial into the ground or walls. In industrial facilities, the electricity is supplied to the loads from the load centers, containing the equipment necessary to protect and control the power flow and the loads. There exist different load center types, with their selection based primarily on the electrical requirements and installation environment. Load centers are housed in","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124183309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Appendix B: Design parameters, values, and data 附录B:设计参数、数值和数据
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_APPENDIXB
R. Belu
{"title":"Appendix B: Design parameters, values, and data","authors":"R. Belu","doi":"10.1049/PBPO096E_APPENDIXB","DOIUrl":"https://doi.org/10.1049/PBPO096E_APPENDIXB","url":null,"abstract":"This book chapter appendix presents information on design parameters, values, and data for industrial power systems with distributed and embedded generation.","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128078166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Matter 回到问题
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/pbpo096e_bm
{"title":"Back Matter","authors":"","doi":"10.1049/pbpo096e_bm","DOIUrl":"https://doi.org/10.1049/pbpo096e_bm","url":null,"abstract":"","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131831579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Appendix C: Design parameters, conversion factors, and data for renewable energy conversion systems 附录C:可再生能源转换系统的设计参数、转换系数和数据
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_APPENDIXC
R. Belu
{"title":"Appendix C: Design parameters, conversion factors, and data for renewable energy conversion systems","authors":"R. Belu","doi":"10.1049/PBPO096E_APPENDIXC","DOIUrl":"https://doi.org/10.1049/PBPO096E_APPENDIXC","url":null,"abstract":"The book chapter appendix presents information on the design parameters, conversion factors, and data for renewable energy conversion systems related to industrial power systems with distributed and embedded generation.","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133969016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geothermal energy, small hydropower, and bioenergy 地热能、小水电和生物能源
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_CH10
R. Belu
{"title":"Geothermal energy, small hydropower, and bioenergy","authors":"R. Belu","doi":"10.1049/PBPO096E_CH10","DOIUrl":"https://doi.org/10.1049/PBPO096E_CH10","url":null,"abstract":"This chapter is focusing on geothermal energy, small hydro-power systems, and a very brief description of biomass suitable for power generation or in industrial processes, building, and other large commercial and applications. Geothermal energy sources are providing thermal energy to the industrial processes, buildings and eventually used to generate electricity, having a significant potential to contribute substantially to the world energy demands. Water energy originates from sources, such as the oceans, seas, rivers, and waterfalls. From water systems, the mechanical energy can be harvested either in kinetic or potential energy from waterfalls, rivers, currents, tides, or waves that eventually is used for power generation. The thermal energy from the temperature differences between ocean's warm and cold deeper layers can also be used for electricity generation having a huge potential and availability. However, ocean thermal energy is not discussed in this chapter, being beyond the scope of this book. Hydropower, the most and the largest renewable energy source for electricity generation, is derived from the energy of moving water from higher to lower elevations or from water kinetic energy. Hydropower systems require relatively high initial investment, but have the advantage of very low operation and maintenance costs and a long lifespan. Hydropower technology is the most advanced and mature renewable energy technology and provides an important portion of the electricity generation in many countries. Small- and mini-hydropower systems mean, the systems that can be applied to the sites ranging from a tiny scheme to electrify a single home, to a few hundred kilowatts or even few megawatts for selling it to the grid. Small-scale hydropower is one of the most cost-effective and reliable energy technologies to be considered for providing clean electricity. Hydroelectric power plants use minimal resources to generate electricity, nor do they pollute the air, land, or water, as other types of power plants may. A reference to the resource estimates and analysis are also included here. Characteristics, advantages, and disadvantages of these renewable energy sources, their operation and characteristics, as well as their major applications are presented in this chapter and discussed in details.","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124909962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Load characteristics, wiring, and power cables 负载特性、接线、电源线
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_ch4
R. Belu
{"title":"Load characteristics, wiring, and power cables","authors":"R. Belu","doi":"10.1049/PBPO096E_ch4","DOIUrl":"https://doi.org/10.1049/PBPO096E_ch4","url":null,"abstract":"Electrical distribution networks, transmission lines, electrical service, wiring devices, protection, and equipment are essential building subsystems and components. Power engineers are concerned with every step and aspects in the process of electricity generation, transmission, distribution, and utilization. Adequate electricity amount and its efficient utilization are essential for the growth and development of any country. Past developments of the power distribution often resulted in higher system losses and poor power quality services. Consequently, an efficient and effective power distribution network, building, or industrial electric systems have become important issues. By optimizing the power distribution, reducing the capital cost, power losses, and improving the power quality are critical issues in power system operation and management, resulting in substantial savings of energy. However, the electric load varies with time and place, such as the load variation customer types and the power production and distribution system must respond to the customers' load demand at any time. Therefore, modern electricity distribution utilities need accurate load data for pricing and tariff planning, distribution network planning and operation, power generation planning, load management, customer service and billing, and finally to provide information to customers and public authorities. After completing this chapter, students and readers are able to learn and understand the power distribution network structure, configurations, operation and management, and the impacts on the building electrical, mechanical, thermal, energy and lighting systems, as well as a good understanding of the building electrical system operation, components and equipment, and related issues. They will also learn to estimate and compute the demand load, apply demand factors, determine demand load for motor, equipment and appliances, understand methods to calculate cable and conductor sizing and capacity, voltage drop calculations and service entrance, operation, parameters and characteristics of wiring devices and their applications, and to develop an understanding and appreciation of the importance of codes and standards.","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115538793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wind and solar energy 风能和太阳能
Industrial Power Systems with Distributed and Embedded Generation Pub Date : 2018-11-30 DOI: 10.1049/PBPO096E_CH9
R. Belu
{"title":"Wind and solar energy","authors":"R. Belu","doi":"10.1049/PBPO096E_CH9","DOIUrl":"https://doi.org/10.1049/PBPO096E_CH9","url":null,"abstract":"In this chapter, we are focusing on the understanding of the basic characteristics of the Sun and the solar radiation, solar energy conversion, wind velocity, wind power, and wind energy conversion systems, the methods to estimate, analyze, and assess the solar or wind energy resource potential. The solar radiation has directional characteristics that are defined by a set of angles that determine the angle of incidence of the radiation on a surface. After completing this chapter, the readers are able to compute these angles and to estimate the available solar radiation incident on horizontal and tilted surfaces. Wind regime and wind characteristics are influenced by synoptic circulation, mesoscale dynamics, being strongly shaped by the local circulation, topography, and conditions. The most important characteristics of wind are its variability and intermittency on a broad range of spatiotemporal scales. The assessment of wind energy potential, design, or operation of wind energy conversion systems requires in-depth knowledge of wind regime and characteristics. In this chapter, we have also included those topics that are based on the extraterrestrial radiation and the geometry of the Earth and Sun. Knowledge about the effects of the atmosphere on the solar radiation, measurement techniques, direct, diffuse, and global radiation are also presented and discussed. Similar topics, such as wind velocity statistics, wind velocity measurements are included and discussed in this chapter. After successfully completing this chapter, the readers or students have a good understating, and become familiar with solar and wind energy system parameters, characteristics, principles of operation, performances, and estimation methods. They also are able to analyze and perform basic calculations and design of wind energy and/or solar energy conversion systems, estimates and assess wind or solar energy potential, select appropriate systems and/or components for a specific application.","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131695532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信