{"title":"EdgeSharing: Edge Assisted Real-time Localization and Object Sharing in Urban Streets","authors":"Luyang Liu, M. Gruteser","doi":"10.1109/INFOCOM42981.2021.9488830","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488830","url":null,"abstract":"Collaborative object localization and sharing at smart intersections promises to improve situational awareness of traffic participants in key areas where hazards exist due to visual obstructions. By sharing a moving object’s location between different camera-equipped devices, it effectively extends the vision of traffic participants beyond their field of view. However, accurately sharing objects between moving clients is extremely challenging due to the high accuracy requirements for localizing both the client position and positions of its detected objects. Therefore, we introduce EdgeSharing, a localization and object sharing system leveraging the resources of edge cloud platforms. EdgeSharing holds a real-time 3D feature map of its coverage region to provide accurate localization and object sharing service to the client devices passing through this region. We further propose several optimization techniques to increase the localization accuracy, reduce the bandwidth consumption and decrease the offloading latency of the system. The result shows that the system is able to achieve a mean vehicle localization error of 0.28-1.27 meters, an object sharing accuracy of 82.3%-91.4%, and a 54.7% object awareness increment in urban streets and intersections. In addition, the proposed optimization techniques reduce bandwidth consumption by 70.12% and end-to-end latency by 40.09%.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117021014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zichuan Xu, Hao-li Ren, W. Liang, Qiufen Xia, Wanlei Zhou, Guowei Wu, Pan Zhou
{"title":"Near Optimal and Dynamic Mechanisms Towards a Stable NFV Market in Multi-Tier Cloud Networks","authors":"Zichuan Xu, Hao-li Ren, W. Liang, Qiufen Xia, Wanlei Zhou, Guowei Wu, Pan Zhou","doi":"10.1109/INFOCOM42981.2021.9488819","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488819","url":null,"abstract":"With the fast development of next-generation networking techniques, a Network Function Virtualization (NFV) market is emerging as a major market that allows network service providers to trade various network services among consumers. Therefore, efficient mechanisms that guarantee stable and efficient operations of the NFV market are urgently needed. One fundamental problem in the NFV market is how to maximize the social welfare of all players, so they have incentives to participate in activities of the market. In this paper, we first formulate the social welfare maximization problem, with an aim to maximize the total revenue of all players in the NFV market. For the social welfare maximization problem, we design an efficient incentive-compatible mechanism and analyze the existence of a Nash equilibrium of the mechanism. We also consider an online social welfare maximization problem without the knowledge of future request arrivals. We devise an online learning algorithm based on Multi-Armed Bandits (MAB) to allow both customers and network service providers to make decisions with uncertainty of customers’ strategy. We evaluate the performance of the proposed mechanisms by both simulations and test-bed implementations, and the results show that the proposed mechanisms obtain at most 23% higher social welfare than existing studies.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116794564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuntao Wang, Zhou Su, Qichao Xu, Ruidong Li, T. Luan
{"title":"Lifesaving with RescueChain: Energy-Efficient and Partition-Tolerant Blockchain Based Secure Information Sharing for UAV-Aided Disaster Rescue","authors":"Yuntao Wang, Zhou Su, Qichao Xu, Ruidong Li, T. Luan","doi":"10.1109/INFOCOM42981.2021.9488719","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488719","url":null,"abstract":"Unmanned aerial vehicles (UAVs) have brought numerous potentials to establish flexible and reliable emergency networks in disaster areas when terrestrial communication infrastructures go down. Nevertheless, potential security threats may occur on UAVs during data transmissions due to the untrustful environment and open-access UAV networking. Moreover, UAVs typically have limited battery and computation capacity, making them unaffordable to execute heavy security provisioning operations when carrying out complicated rescue tasks. In this paper, we develop RescueChain, a secure and efficient information sharing scheme for UAV-aided disaster rescue. Specifically, we first implement a lightweight blockchain-based framework to safeguard data sharing under disasters and immutably trace misbehaving entities. A reputation-based consensus protocol is devised to adapt the weakly connected environment with improved consensus efficiency and promoted UAVs’ honest behaviors. Furthermore, we introduce a novel vehicular fog computing based off-chain mechanism by leveraging ground vehicles as moving fog nodes to offload UAVs’ heavy data processing and storage tasks. To optimally stimulate vehicles to share their idle computing resources, we also design a two-layer reinforcement learning based incentive algorithm for UAVs and ground vehicles in the highly dynamic networks. Simulation results show that RescueChain can effectively accelerate consensus process, enhance user payoffs, and reduce delivery latency, compared with representative existing approaches.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124079582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Counter-Collusion Smart Contracts for Watchtowers in Payment Channel Networks","authors":"Yuhui Zhang, Dejun Yang, G. Xue, Ruozhou Yu","doi":"10.1109/INFOCOM42981.2021.9488831","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488831","url":null,"abstract":"Payment channel networks (PCNs) are proposed to improve the cryptocurrency scalability by settling off-chain transactions. However, PCN introduces an undesirable assumption that a channel participant must stay online and be synchronized with the blockchain to defend against frauds. To alleviate this issue, watchtowers have been introduced, such that a hiring party can employ a watchtower to monitor the channel for fraud. However, a watchtower might profit from colluding with a cheating counterparty and fail to perform this job. Existing solutions either focus on heavy cryptographic techniques or require a large collateral. In this work, we leverage smart contracts through economic approaches to counter collusions for watchtowers in PCNs. This brings distrust between the watchtower and the counterparty, so that rational parties do not collude or cheat. We provide detailed analyses on the contracts and rigorously prove that the contracts are effective to counter collusions with minimal on-chain operations. In particular, a watchtower only needs to lock a small collateral, which incentivizes participation of watchtowers and users. We also provide an implementation of the contracts in Solidity and execute them on Ethereum to demonstrate the scalability and efficiency of the contracts.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125804392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uplink Multi-User Beamforming on Single RF Chain mmWave WLANs","authors":"Keerthi Priya Dasala, J. Jornet, E. Knightly","doi":"10.1109/INFOCOM42981.2021.9488826","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488826","url":null,"abstract":"Today’s mmWave WLANs can realize simultaneous multi-user multi-stream transmission solely on the downlink. In this paper, we present Uplink Multi-user Beamforming on single RF chain AP (UMBRA), a novel framework for supporting multi-stream multi-user uplink transmissions via a single RF chain. We design multi-user overlayed constellations and multi-user receiver mechanisms to enable concurrent time-triggered uplink multi-user transmissions received on a single RF chain AP. We devise exemplary beam selection policies to jointly adapt beams at users and the AP for targeting aggregate rate maximization without increasing training requirements compared to single-user systems. We implement the key components of UMBRA using a programmable WLAN testbed using software-defined radios and commercial 60-GHz transceivers and collect over-the-air measurements using phased-array antennas and horn antennas with varying beamwidth. We find that in comparison to single-user transmissions, UMBRA achieves more than 1.45× improvement in aggregate rate regardless of the choice of the user group, geometric separation, and receiver beamwidth.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129388468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ToP: Time-dependent Zone-enhanced Points-of-interest Embedding-based Explainable Recommender system","authors":"E. Wang, Yuanbo Xu, Yongjian Yang, Fukang Yang, Chunyu Liu, Yiheng Jiang","doi":"10.1109/INFOCOM42981.2021.9488726","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488726","url":null,"abstract":"Points-of-interest (POIs) recommendation plays a vital role by introducing unexplored POIs to consumers and has drawn extensive attention from both academia and industry. Existing POI recommender systems usually learn latent vectors to represent both consumers and POIs from historical check-ins and make recommendations under the spatiotemporal constraints. However, we argue that the existing works still suffer from the challenges of explaining consumers complicated check-in actions. In this paper, we first explore the interpretability of recommendations from the POI aspect, i.e., for a specific POI, its function usually changes over time, so representing a POI with a single fixed latent vector is not sufficient to describe POIs dynamic function. Besides, check-in actions to a POI is also affected by the zone it belongs to. In other words, the zone’s embedding learned from POI distributions, road segments, and historical check-ins could be jointly utilized to enhance the accuracy of POI recommendations. Along this line, we propose a Time-dependent Zone-enhanced POI embedding model (ToP), a recommender system that integrates knowledge graph and topic model to introduce the spatiotemporal effects into POI embeddings for strengthening interpretability of recommendation. Specifically, ToP learns multiple latent vectors for a POI in different time to capture its dynamic functions. Jointly combining these vectors with zones representations, ToP enhances the spatiotemporal interpretability of POI recommendations. With this hybrid architecture, some existing POI recommender systems can be treated as special cases of ToP. Extensive experiments on real-world Changchun city datasets demonstrate that ToP not only achieves state-of-the-art performance in terms of common metrics, but also provides more insights for consumers POI check-in actions.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129562136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SmartDistance: A Mobile-based Positioning System for Automatically Monitoring Social Distance","authors":"Li Li, Xiaorui Wang, Wenli Zheng, Chengzhong Xu","doi":"10.1109/INFOCOM42981.2021.9488735","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488735","url":null,"abstract":"Coronavirus disease 2019 (COVID-19) has resulted in an ongoing pandemic. Since COVID-19 spreads mainly via close contact among people, social distancing has become an effective manner to slow down the spread. However, completely forbidding close contact can also lead to unacceptable damage to the society. Thus, a system that can effectively monitor people’s social distance and generate corresponding alerts when a high infection probability is detected is in urgent need.In this paper, we propose SmartDistance, a smartphone based software framework that monitors people’s interaction in an effective manner, and generates a reminder whenever the infection probability is high. Specifically, SmartDistance dynamically senses both the relative distance and orientation during social interaction with a well-designed relative positioning system. In addition, it recognizes different events (e.g., speaking, coughing) and determines the infection space through a droplet transmission model. With event recognition and relative positioning, SmartDistance effectively detects risky social interaction, generates an alert immediately, and records the relevant data for close contact reporting. We prototype SmartDistance on different Android smartphones, and the evaluation shows it reduces the false positive rate from 33% to 1% and the false negative rate from 5% to 3% in infection risk detection.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129649526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Push the Limit of Device-Free Acoustic Sensing on Commercial Mobile Devices","authors":"Haiming Cheng, W. Lou","doi":"10.1109/INFOCOM42981.2021.9488703","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488703","url":null,"abstract":"Device-free acoustic sensing has obsessed with renovating human-computer interaction techniques for all-sized mobile devices in various applications. Recent advances have explored sound signals in different methods to achieve highly accurate and efficient tracking and recognition. However, accuracies of most approaches remain bottlenecked by the limited sampling rate and narrow bandwidth, leading to restrictions and inconvenience in applications. To bridge over the aforementioned daunting barriers, we propose PDF, a novel ultrasound-based device-free tracking scheme that can distinctly improve the resolution of fine-grained sensing to submillimetre level. In its heart lies an original Phase Difference based approach to derive time delay of the reflected Frequency-Modulated Continuous Wave (FMCW), thus precisely inferring absolute distance, catering to interaction needs of tinier perception with lower delay. The distance resolution of PDF is only related to the speed of actions and chirp duration. We implement a prototype with effective denoising methods all in the time domain on smartphones. The evaluation results show that PDF achieves accuracies of 2.5 mm, 3.6 mm, and 2.1 mm in distance change, absolute distance change, and trajectory tracking error respectively. PDF is also valid in recognizing 2 mm or even tinier micro-movements, which paves the way for more delicate sensing work.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"02 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127425797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Ayala-Romero, Andres Garcia-Saavedra, X. Costa, G. Iosifidis
{"title":"Bayesian Online Learning for Energy-Aware Resource Orchestration in Virtualized RANs","authors":"J. Ayala-Romero, Andres Garcia-Saavedra, X. Costa, G. Iosifidis","doi":"10.1109/INFOCOM42981.2021.9488845","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488845","url":null,"abstract":"Radio Access Network Virtualization (vRAN) will spearhead the quest towards supple radio stacks that adapt to heterogeneous infrastructure: from energy-constrained platforms deploying cells-on-wheels (e.g., drones) or battery-powered cells to green edge clouds. We perform an in-depth experimental analysis of the energy consumption of virtualized Base Stations (vBSs) and render two conclusions: (i) characterizing performance and power consumption is intricate as it depends on human behavior such as network load or user mobility; and (ii) there are many control policies and some of them have non-linear and monotonic relations with power and throughput. Driven by our experimental insights, we argue that machine learning holds the key for vBS control. We formulate two problems and two algorithms: (i) BP-vRAN, which uses Bayesian online learning to balance performance and energy consumption, and (ii) SBP-vRAN, which augments our Bayesian optimization approach with safe controls that maximize performance while respecting hard power constraints. We show that our approaches are data-efficient and have provably performance, which is paramount for carrier-grade vRANs. We demonstrate the convergence and flexibility of our approach and assess its performance using an experimental prototype.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127329498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proximity-Echo: Secure Two Factor Authentication Using Active Sound Sensing","authors":"Yanzhi Ren, Ping Wen, Hongbo Liu, Zhourong Zheng, Yingying Chen, Pengcheng Huang, Hongwei Li","doi":"10.1109/INFOCOM42981.2021.9488866","DOIUrl":"https://doi.org/10.1109/INFOCOM42981.2021.9488866","url":null,"abstract":"The two-factor authentication (2FA) has drawn increasingly attention as the mobile devices become more prevalent. For example, the user’s possession of the enrolled phone could be used by the 2FA system as the second proof to protect his/her online accounts. Existing 2FA solutions mainly require some form of user-device interaction, which may severely affect user experience and creates extra burdens to users. In this work, we propose Proximity-Echo, a secure 2FA system utilizing the proximity of a user’s enrolled phone and the login device as the second proof without requiring the user’s interactions or pre-constructed device fingerprints. The basic idea of Proximity-Echo is to derive location signatures based on acoustic beep signals emitted alternately by both devices and sensing the echoes with microphones, and compare the extracted signatures for proximity detection. Given the received beep signal, our system designs a period selection scheme to identify two sound segments accurately: the chirp period is the sound segment propagating directly from the speaker to the microphone whereas the echo period is the sound segment reflected back by surrounding objects. To achieve an accurate proximity detection, we develop a new energy loss compensation extraction scheme by utilizing the extracted chirp periods to estimate the intrinsic differences of energy loss between microphones of the enrolled phone and the login device. Our proximity detection component then conducts the similarity comparison between the identified two echo periods after the energy loss compensation to effectively determine whether the enrolled phone and the login device are in proximity for 2FA. Our experimental results show that our Proximity-Echo is accurate in providing 2FA and robust to both man-in-the-middle (MiM) and co-located attacks across different scenarios and device models.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130259230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}