E. Barka, Mohammed Al Baqari, Kerrache Chaker Abdelaziz, Jorge Herrera-Tapia
{"title":"Implementation of a Biometric-Based Blockchain System for Preserving Privacy, Security, and Access Control in Healthcare Records","authors":"E. Barka, Mohammed Al Baqari, Kerrache Chaker Abdelaziz, Jorge Herrera-Tapia","doi":"10.3390/jsan11040085","DOIUrl":"https://doi.org/10.3390/jsan11040085","url":null,"abstract":"The use of Electronic Health Record (EHR) systems has emerged with the continuous advancement of the Internet of Things (IoT) and smart devices. This is driven by the various advantages for both patients and healthcare providers, including timely and distant alerts, continuous control, and reduced cost, to name a few. However, while providing these advantages, various challenges involving heterogeneity, scalability, and network complexity are still open. Patient security, data privacy, and trust are also among the main challenges that need more research effort. To this end, this paper presents an implementation of a biometric-based blockchain EHR system (BBEHR), a prototype that uniquely identifies patients, enables them to control access to their EHRs, and ensures recoverable access to their EHRs. This approach overcomes the dependency on the private/public key approach used by most blockchain technologies to identify patients, which becomes more crucial in situations where a loss of the private key permanently hinders the ability to access patients’ EHRs. Our solution covers component selection, high-level implementation, and integration of subsystems, was well as the coding of a prototype to validate the mitigation of the risk of permanent loss of access to EHRs by using patients’ fingerprints. A performance analysis of BBEHR showed our system’s robustness and effectiveness in identifying patients and ensuring access control for their EHRs by using blockchain smart contracts with no additional overhead.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122054350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fog Computing, Cloud Computing and IoT Environment: Advanced Broker Management System","authors":"Mohammed Al-Masarweh, T. Alwada'n, Waleed Afandi","doi":"10.3390/jsan11040084","DOIUrl":"https://doi.org/10.3390/jsan11040084","url":null,"abstract":"Cloud computing is a massive amount of dynamic ad distributed resources that are delivered on request to clients over the Internet. Typical centralized cloud computing models may have difficulty dealing with challenges caused by IoT applications, such as network failure, latency, and capacity constraints. One of the introduced methods to solve these challenges is fog computing which makes the cloud closer to IoT devices. A system for dynamic congestion management brokerage is presented in this paper. With this proposed system, the IoT quality of service (QoS) requirements as defined by the service-level agreement (SLA) can be met as the massive amount of cloud requests come from the fog broker layer. In addition, a forwarding policy is introduced which helps the cloud service broker to select and forward the high-priority requests to the appropriate cloud resources from fog brokers and cloud users. This proposed idea is influenced by the weighted fair queuing (WFQ) Cisco queuing mechanism to simplify the management and control of the congestion that may possibly take place at the cloud service broker side. The system proposed in this paper is evaluated using iFogSim and CloudSim tools, and the results demonstrate that it improves IoT (QoS) compliance, while also avoiding cloud SLA violations.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132156772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Basnayake, H. Mabed, D. Jayakody, P. Canalda, M. Beko
{"title":"Adaptive Emergency Call Service for Disaster Management","authors":"V. Basnayake, H. Mabed, D. Jayakody, P. Canalda, M. Beko","doi":"10.3390/jsan11040083","DOIUrl":"https://doi.org/10.3390/jsan11040083","url":null,"abstract":"Reliable and efficient transmission of emergency calls during a massive network failure is both an indispensable and challenging task. In this paper, we propose a novel fully 3GPP and 5G compatible emergency call protocol named 5G StandalOne Service (5G-SOS). A 5G-SOS-enabled emergency service provides potential out-of-coverage victims’ devices with a way to contact the 4G/5G core network through D2D multi-hop relaying protocol. The objective of 5G-SOS is to maintain this connection even when a large fraction of the network infrastructure is destroyed. 5G-SOS is a fully distributed protocol designed to generate zero additional control traffic and to adapt its parameters based on the local emergency call congestion. Therefore, devices behave as an ad-hoc network with the common purpose to ensure the best chances for emergency call transfer within a reasonable delay. A densely populated Traverse city of Michigan, USA, with a 15,000 population, is used to evaluate 5G-SOS under extreme emergency scenarios. The performance of 5G-SOS is shown to be significant when compared with existing protocols, namely, M-HELP and FINDER, in terms of transmission success rate, end-to-end latency, network traffic control, and energy management. 5G-SOS provides satisfactory performance (success rate of 50%) even when the number of simultaneous emergency calls is very high (5000 calls over 10 min). On average, 5G-SOS performs 24.9% better than M-HELP and 73.9% than FINDER in terms of success rate. Additionally, 5G-SOS reduces the average end-end latency of the emergency calls transfer by 20.8% compared to M-HELP and 61.7% compared to FINDER.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124088636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. J. Pazhani, Perumalsamy Gunasekaran, V. Shanmuganathan, Sangsoon Lim, M. Kaliappan, R. Manoharan, A. Verma
{"title":"Peer-Peer Communication Using Novel Slice Handover Algorithm for 5G Wireless Networks","authors":"A. J. Pazhani, Perumalsamy Gunasekaran, V. Shanmuganathan, Sangsoon Lim, M. Kaliappan, R. Manoharan, A. Verma","doi":"10.3390/jsan11040082","DOIUrl":"https://doi.org/10.3390/jsan11040082","url":null,"abstract":"The goal of 5G wireless networks is to address the growing need for network services among users. User equipment has progressed to the point where users now expect diverse services from the network. The latency, reliability, and bandwidth requirements of users can all be classified. To fulfil the different needs of users in an economical manner, while guaranteeing network resources are resourcefully assigned to consumers, 5G systems plan to leverage technologies like Software Defined Networks, Network Function Virtualization, and Network Slicing. For the purpose of ensuring continuous handover among network slices, while catering to the advent of varied 5G application scenarios, new mobility management techniques must be adopted in Sliced 5G networks. Users want to travel from one region of coverage to another region without any fading in their network connection. Different network slices can coexist in 5G networks, with every slice offering services customized to various QoS demands. As a result, when customers travel from one region of coverage to another, the call can be transferred to a slice that caters to similar or slightly different requirements. The goal of this study was to develop an intra- and inter-slice algorithm for determining handover decisions in sliced 5G networks and to assess performance by comparing intra- and inter-slice handovers. The proposed work shows that an inter-slice handover algorithm offers superior quality of service when compared to an intra-slice algorithm.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115309520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Body Motion Sensor Analysis of Human-Induced Dynamic Load Factor (DLF) for Normal Walks on Slender Transparent Floors","authors":"Chiara Bedon, Marco Fasan, S. Noè","doi":"10.3390/jsan11040081","DOIUrl":"https://doi.org/10.3390/jsan11040081","url":null,"abstract":"Modern constructions are often characterized by the presence of slender and aesthetically fascinating components and assemblies. For pedestrian systems in particular, such constructions are notoriously associated with possible vibration issues, and thus require special calculations. When these slender systems are made of structural glass, additional effects due to transparency may also affect human behaviours and motions. In this paper, based on a single body motion, a microelectromechanical system (MEMS) sensor in the body’s centre of mass (CoM) is introduced, an extended, original experimental investigation is presented, and human-induced effects on slender transparent floors are discussed. Major attention is given to the well-known dynamic load factor (DLF) induced by a single pedestrian’s normal walk; a fixed walking rate is assigned, and different substructures (with major variations in their structural dynamic parameters) are taken into account. A discussion of experimental results is proposed for rigid reinforced concrete (RC), and a laboratory contrast system (SLAB#1), which is used as a reference for the analysis of DLF trends on relatively light and flexible transparent glass flooring systems (SLAB#2 and SLAB#3). It is shown that structural frequency and mass, but also possibly transparency, can affect human motion and result in a quantitative modification of measured DLF values, especially for the first and second harmonics of vertical force components.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122928350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IPChain: Blockchain-Based Security Protocol for IoT Address Management Servers in Smart Homes","authors":"B. M. Yakubu, M. Khan, P. Bhattarakosol","doi":"10.3390/jsan11040080","DOIUrl":"https://doi.org/10.3390/jsan11040080","url":null,"abstract":"The dynamic host configuration protocol (DHCP) servers are forms of an Internet of Things (IoT) address management server (IoTAMS) that gives network configuration settings to newly connected hosts. Administrators of a network may save time by setting DHCP servers instead of every network node. However, the absence of a more robust authentication method for DHCP servers makes hosts susceptible to attacks since neither the server nor the users are able to check the other’s authenticity during DHCP connections. These concerns result in both internal and external threats to the system that have the potential to impair network services. Among these threats are malicious DHCP servers and DHCP starvation. This paper aims to provide a novel approach for tackling these issues and protect the DHCP protocol. The proposed model uses the Diffie–Hellman key exchange mechanism, the elliptic curve discrete logarithm problem (ECDLP), a one-way hash function, blockchain technology, and a smart contract. In addition, registration and validation processes provide support for the proposed model in combating DHCP risks for both internal and external system threats. Results from this study show that the proposed model has an average of 21.1% more resistance to a growing number of adversaries than the benchmark models, thus revealing that the model is better suited for the security of IoT address management servers in smart homes, thereby enhancing resilience against related threats and the success of IP address management.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132044548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modern Forms and New Challenges in Medical Sensors and Body Area Networks","authors":"Yudong Zhang, J. Górriz, Shuihua Wang","doi":"10.3390/jsan11040079","DOIUrl":"https://doi.org/10.3390/jsan11040079","url":null,"abstract":"Traditional medical sensors/monitors can measure pressure, airflow, force, oxygen, pulse, temperature, etc [...]","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131095315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ricardo R. Lângaro, Marcelo Teixeira, Richardson Ribeiro, Jefferson T. Oliva, Marco A. C. Barbosa
{"title":"Optimization of Switch Allocation Problems in Power Distribution Networks","authors":"Ricardo R. Lângaro, Marcelo Teixeira, Richardson Ribeiro, Jefferson T. Oliva, Marco A. C. Barbosa","doi":"10.3390/jsan11040077","DOIUrl":"https://doi.org/10.3390/jsan11040077","url":null,"abstract":"This paper presents the implementation of the mono-objective Switch Allocation Problem (SAP) optimization model for electric power distribution networks, considering the equivalent interruption duration per consumer unit EIDCU and non-distributed energy END reliability indexes. We use the current summation algorithm to solve the power flow, and we employ an intelligent bee colony algorithm to solve the model. Two network topologies, one with 43 and another with 136 bars, adapted from the literature, are used to illustrate the solution. Results show a significant reduction in the financial cost of planning a power distribution network.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117058544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yonghong Chen, Hao Li, Han Li, Wenhao Liu, Yirui Wu, Qian Huang, Shaohua Wan
{"title":"An Overview of Knowledge Graph Reasoning: Key Technologies and Applications","authors":"Yonghong Chen, Hao Li, Han Li, Wenhao Liu, Yirui Wu, Qian Huang, Shaohua Wan","doi":"10.3390/jsan11040078","DOIUrl":"https://doi.org/10.3390/jsan11040078","url":null,"abstract":"In recent years, with the rapid development of Internet technology and applications, the scale of Internet data has exploded, which contains a significant amount of valuable knowledge. The best methods for the organization, expression, calculation, and deep analysis of this knowledge have attracted a great deal of attention. The knowledge graph has emerged as a rich and intuitive way to express knowledge. Knowledge reasoning based on knowledge graphs is one of the current research hot spots in knowledge graphs and has played an important role in wireless communication networks, intelligent question answering, and other applications. Knowledge graph-oriented knowledge reasoning aims to deduce new knowledge or identify wrong knowledge from existing knowledge. Different from traditional knowledge reasoning, knowledge reasoning methods oriented to knowledge graphs are more diversified due to the concise, intuitive, flexible, and rich knowledge expression forms in knowledge graphs. Based on the basic concepts of knowledge graphs and knowledge graph reasoning, this paper introduces the latest research progress in knowledge graph-oriented knowledge reasoning methods in recent years. Specifically, according to different reasoning methods, knowledge graph reasoning includes rule-based reasoning, distributed representation-based reasoning, neural network-based reasoning, and mixed reasoning. These methods are summarized in detail, and the future research directions and prospects of knowledge reasoning based on knowledge graphs are discussed and prospected.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131805539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Knowledge-Based Battery Controller for IoT Devices","authors":"J. C. Bago, J. Fernández-Prieto","doi":"10.3390/jsan11040076","DOIUrl":"https://doi.org/10.3390/jsan11040076","url":null,"abstract":"Internet of things (IoT) devices are often located in difficult-to-access places without connection to the electrical grid. For this reason, some IoT devices usually incorporate a small stand-alone photovoltaic (PV) system to power only the IoT device. However, several IoT applications involve using other components, such as instrumentation, electrical motors, lighting bulbs, etc., which require additional electrical power. The objective of this study was to design and implement a battery controller integrated into a constrained resource device that allows powering not only other components of the IoT application but also the IoT device. In this way, the IoT device controls and monitors the PV system and executes other IoT applications such as lighting. Results show that the designed controller exhibits efficient behavior when compared with other regulators and can be integrated into resource-constrained devices, improving the life of batteries and reducing cost.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132709712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}