Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation最新文献

筛选
英文 中文
COHORT: Coordination of Heterogeneous Thermostatically Controlled Loads for Demand Flexibility 队列:需求灵活性的异构恒温控制负载的协调
Bingqing Chen, Jonathan Francis, Marco Pritoni, S. Kar, Mario Berg'es
{"title":"COHORT: Coordination of Heterogeneous Thermostatically Controlled Loads for Demand Flexibility","authors":"Bingqing Chen, Jonathan Francis, Marco Pritoni, S. Kar, Mario Berg'es","doi":"10.1145/3408308.3427980","DOIUrl":"https://doi.org/10.1145/3408308.3427980","url":null,"abstract":"Demand flexibility is increasingly important for power grids. Careful coordination of thermostatically controlled loads (TCLs) can modulate energy demand, decrease operating costs, and increase grid resiliency. We propose a novel distributed control framework for the Coordination Of HeterOgeneous Residential Thermostatically controlled loads (COHORT). COHORT is a practical, scalable, and versatile solution that coordinates a population of TCLs to jointly optimize a grid-level objective, while satisfying each TCL's end-use requirements and operational constraints. To achieve that, we decompose the grid-scale problem into subproblems and coordinate their solutions to find the global optimum using the alternating direction method of multipliers (ADMM). The TCLs' local problems are distributed to and computed in parallel at each TCL, making COHORT highly scalable and privacy-preserving. While each TCL poses combinatorial and non-convex constraints, we characterize these constraints as a convex set through relaxation, thereby making COHORT computationally viable over long planning horizons. After coordination, each TCL is responsible for its own control and tracks the agreed-upon power trajectory with its preferred strategy. In this work, we translate continuous power back to discrete on/off actuation, using pulse width modulation. COHORT is generalizable to a wide range of grid objectives, which we demonstrate through three distinct use cases: generation following, minimizing ramping, and peak load curtailment. In a notable experiment, we validated our approach through a hardware-in-the-loop simulation, including a real-world air conditioner (AC) controlled via a smart thermostat, and simulated instances of ACs modeled after real-world data traces. During the 15-day experimental period, COHORT reduced daily peak loads by an average of 12.5% and maintained comfortable temperatures.","PeriodicalId":287030,"journal":{"name":"Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129010630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Balancing thermal comfort datasets: We GAN, but should we? 平衡热舒适数据集:我们GAN,但我们应该吗?
Matias Quintana, S. Schiavon, K. Tham, Clayton Miller
{"title":"Balancing thermal comfort datasets: We GAN, but should we?","authors":"Matias Quintana, S. Schiavon, K. Tham, Clayton Miller","doi":"10.1145/3408308.3427612","DOIUrl":"https://doi.org/10.1145/3408308.3427612","url":null,"abstract":"Thermal comfort assessment for the built environment has become more available to analysts and researchers due to the proliferation of sensors and subjective feedback methods. These data can be used for modeling comfort behavior to support design and operations towards energy efficiency and well-being. By nature, occupant subjective feedback is imbalanced as indoor conditions are designed for comfort, and responses indicating otherwise are less common. This situation creates a scenario for the machine learning workflow where class balancing as a pre-processing step might be valuable for developing predictive thermal comfort classification models with high-performance. This paper investigates the various thermal comfort dataset class balancing techniques from the literature and proposes a modified conditional Generative Adversarial Network (GAN), comfortGAN, to address this imbalance scenario. These approaches are applied to three publicly available datasets, ranging from 30 and 67 participants to a global collection of thermal comfort datasets, with 1,474; 2,067; and 66,397 data points, respectively. This work finds that a classification model trained on a balanced dataset, comprised of real and generated samples from comfortGAN, has higher performance (increase between 4% and 17% in classification accuracy) than other augmentation methods tested. However, when classes representing discomfort are merged and reduced to three, better imbalanced performance is expected, and the additional increase in performance by comfortGAN shrinks to 1--2%. These results illustrate that class balancing for thermal comfort modeling is beneficial using advanced techniques such as GANs, but its value is diminished in certain scenarios. A discussion is provided to assist potential users in determining which scenarios this process is useful and which method works best.","PeriodicalId":287030,"journal":{"name":"Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"438 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133392745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
One for Many: Transfer Learning for Building HVAC Control 一个对许多:建筑暖通空调控制的迁移学习
Shichao Xu, Yixuan Wang, Yanzhi Wang, Zheng O’Neill, Qi Zhu
{"title":"One for Many: Transfer Learning for Building HVAC Control","authors":"Shichao Xu, Yixuan Wang, Yanzhi Wang, Zheng O’Neill, Qi Zhu","doi":"10.1145/3408308.3427617","DOIUrl":"https://doi.org/10.1145/3408308.3427617","url":null,"abstract":"The design of building heating, ventilation, and air conditioning (HVAC) system is critically important, as it accounts for around half of building energy consumption and directly affects occupant comfort, productivity, and health. Traditional HVAC control methods are typically based on creating explicit physical models for building thermal dynamics, which often require significant effort to develop and are difficult to achieve sufficient accuracy and efficiency for runtime building control and scalability for field implementations. Recently, deep reinforcement learning (DRL) has emerged as a promising data-driven method that provides good control performance without analyzing physical models at runtime. However, a major challenge to DRL (and many other data-driven learning methods) is the long training time it takes to reach the desired performance. In this work, we present a novel transfer learning based approach to overcome this challenge. Our approach can effectively transfer a DRL-based HVAC controller trained for the source building to a controller for the target building with minimal effort and improved performance, by decomposing the design of neural network controller into a transferable front-end network that captures building-agnostic behavior and a back-end network that can be efficiently trained for each specific building. We conducted experiments on a variety of transfer scenarios between buildings with different sizes, numbers of thermal zones, materials and layouts, air conditioner types, and ambient weather conditions. The experimental results demonstrated the effectiveness of our approach in significantly reducing the training time, energy cost, and temperature violations.","PeriodicalId":287030,"journal":{"name":"Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130489634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信