Wavelet TheoryPub Date : 2020-12-15DOI: 10.5772/intechopen.94970
A. Bassou
{"title":"The Discrete Quincunx Wavelet Packet Transform","authors":"A. Bassou","doi":"10.5772/intechopen.94970","DOIUrl":"https://doi.org/10.5772/intechopen.94970","url":null,"abstract":"This chapter aims to present an efficient compression algorithm based on quincunx wavelet packet transform that can be applied on any image of size 128×128 or bigger. Therefore, a division process into sub-images of size 128×128 was applied on three gray-scale image databases, then pass each sub-image through the wavelet transform and a bit-level encoder, to finally compress the sub-image with respect to a fixed bit rate. The quality of the reconstructed image is evaluated using several parameters at a given bit rate. In order to improve the quality in sense of the evaluation quality, an exhaustive search has led to the best packet decomposition base. Two versions of the proposed compression scheme were performed; the optimal version is able to decrease the effect of block boundary artifacts (caused by the image division process) by 27.70% considering a natural image. This optimal version of the compression scheme was compared with JPEG standard using the quality evaluation parameters and visual observation. As a result, the proposed compression scheme presents a competitive performance to JPEG standard; where the proposed scheme performs a peak signal to noise ratio of 0.88dB over JPEG standard at a bit rate of 0.50bpp for a satellite image.","PeriodicalId":285444,"journal":{"name":"Wavelet Theory","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134145597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wavelet TheoryPub Date : 2020-11-30DOI: 10.5772/intechopen.94519
Xi Zhang
{"title":"Wavelet Filter Banks Using Allpass Filters","authors":"Xi Zhang","doi":"10.5772/intechopen.94519","DOIUrl":"https://doi.org/10.5772/intechopen.94519","url":null,"abstract":"Allpass filter is a computationally efficient versatile signal processing building block. The interconnection of allpass filters has found numerous applications in digital filtering and wavelets. In this chapter, we discuss several classes of wavelet filter banks by using allpass filters. Firstly, we describe two classes of orthogonal wavelet filter banks composed of two real allpass filters or a complex allpass filter, and then consider design of orthogonal filter banks without or with symmetry, respectively. Next, we present two classes of filter banks by using allpass filters in lifting scheme. One class is causal stable biorthogonal wavelet filter bank and another class is orthogonal wavelet filter bank, all with approximately linear phase response. We also give several design examples to demonstrate the effectiveness of the proposed method.","PeriodicalId":285444,"journal":{"name":"Wavelet Theory","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125290138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wavelet TheoryPub Date : 2020-11-12DOI: 10.5772/intechopen.94554
N. Tudoroiu, M. Zaheeruddin, Roxana-Elena Tudoroiu, S. Radu
{"title":"Fault Detection, Diagnosis, and Isolation Strategy in Li-Ion Battery Management Systems of HEVs Using 1-D Wavelet Signal Analysis","authors":"N. Tudoroiu, M. Zaheeruddin, Roxana-Elena Tudoroiu, S. Radu","doi":"10.5772/intechopen.94554","DOIUrl":"https://doi.org/10.5772/intechopen.94554","url":null,"abstract":"Nowadays, the wavelet transformation and the 1-D wavelet technique provide valuable tools for signal processing, design, and analysis, in a wide range of control systems industrial applications, audio image and video compression, signal denoising, interpolation, image zooming, texture analysis, time-scale features extraction, multimedia, electrocardiogram signals analysis, and financial prediction. Based on this awareness of the vast applicability of 1-D wavelet in signal processing applications as a feature extraction tool, this paper aims to take advantage of its ability to extract different patterns from signal data sets collected from healthy and faulty input-output signals. It is beneficial for developing various techniques, such as coding, signal processing (denoising, filtering, reconstruction), prediction, diagnosis, detection and isolation of defects. The proposed case study intends to extend the applicability of these techniques to detect the failures that occur in the battery management control system, such as sensor failures to measure the current, voltage and temperature inside an HEV rechargeable battery, as an alternative to Kalman filtering estimation techniques. The MATLAB simulation results conducted on a MATLAB R2020a software platform demonstrate the effectiveness of the proposed scheme in terms of detection accuracy, computation time, and robustness against measurement uncertainty.","PeriodicalId":285444,"journal":{"name":"Wavelet Theory","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133626793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wavelet TheoryPub Date : 2020-11-12DOI: 10.5772/intechopen.94398
Nikesh Bajaj
{"title":"Wavelets for EEG Analysis","authors":"Nikesh Bajaj","doi":"10.5772/intechopen.94398","DOIUrl":"https://doi.org/10.5772/intechopen.94398","url":null,"abstract":"This chapter introduces the applications of wavelet for Electroencephalogram (EEG) signal analysis. First, the overview of EEG signal is discussed to the recording of raw EEG and widely used frequency bands in EEG studies. The chapter then progresses to discuss the common artefacts that contaminate EEG signal while recording. With a short overview of wavelet analysis techniques, namely; Continues Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Decomposition (WPD), the chapter demonstrates the richness of CWT over conventional time-frequency analysis technique e.g. Short-Time Fourier Transform. Lastly, artefact removal algorithms based on Independent Component Analysis (ICA) and wavelet are discussed and a comparative analysis is demonstrated. The techniques covered in this chapter show that wavelet analysis is well-suited for EEG signals for describing time-localised event. Due to similar nature, wavelet analysis is also suitable for other biomedical signals such as Electrocardiogram and Electromyogram.","PeriodicalId":285444,"journal":{"name":"Wavelet Theory","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115533803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}