N. Tudoroiu, M. Zaheeruddin, Roxana-Elena Tudoroiu, S. Radu
{"title":"基于一维小波分析的混合动力汽车锂离子电池管理系统故障检测、诊断与隔离策略","authors":"N. Tudoroiu, M. Zaheeruddin, Roxana-Elena Tudoroiu, S. Radu","doi":"10.5772/intechopen.94554","DOIUrl":null,"url":null,"abstract":"Nowadays, the wavelet transformation and the 1-D wavelet technique provide valuable tools for signal processing, design, and analysis, in a wide range of control systems industrial applications, audio image and video compression, signal denoising, interpolation, image zooming, texture analysis, time-scale features extraction, multimedia, electrocardiogram signals analysis, and financial prediction. Based on this awareness of the vast applicability of 1-D wavelet in signal processing applications as a feature extraction tool, this paper aims to take advantage of its ability to extract different patterns from signal data sets collected from healthy and faulty input-output signals. It is beneficial for developing various techniques, such as coding, signal processing (denoising, filtering, reconstruction), prediction, diagnosis, detection and isolation of defects. The proposed case study intends to extend the applicability of these techniques to detect the failures that occur in the battery management control system, such as sensor failures to measure the current, voltage and temperature inside an HEV rechargeable battery, as an alternative to Kalman filtering estimation techniques. The MATLAB simulation results conducted on a MATLAB R2020a software platform demonstrate the effectiveness of the proposed scheme in terms of detection accuracy, computation time, and robustness against measurement uncertainty.","PeriodicalId":285444,"journal":{"name":"Wavelet Theory","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Detection, Diagnosis, and Isolation Strategy in Li-Ion Battery Management Systems of HEVs Using 1-D Wavelet Signal Analysis\",\"authors\":\"N. Tudoroiu, M. Zaheeruddin, Roxana-Elena Tudoroiu, S. Radu\",\"doi\":\"10.5772/intechopen.94554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the wavelet transformation and the 1-D wavelet technique provide valuable tools for signal processing, design, and analysis, in a wide range of control systems industrial applications, audio image and video compression, signal denoising, interpolation, image zooming, texture analysis, time-scale features extraction, multimedia, electrocardiogram signals analysis, and financial prediction. Based on this awareness of the vast applicability of 1-D wavelet in signal processing applications as a feature extraction tool, this paper aims to take advantage of its ability to extract different patterns from signal data sets collected from healthy and faulty input-output signals. It is beneficial for developing various techniques, such as coding, signal processing (denoising, filtering, reconstruction), prediction, diagnosis, detection and isolation of defects. The proposed case study intends to extend the applicability of these techniques to detect the failures that occur in the battery management control system, such as sensor failures to measure the current, voltage and temperature inside an HEV rechargeable battery, as an alternative to Kalman filtering estimation techniques. The MATLAB simulation results conducted on a MATLAB R2020a software platform demonstrate the effectiveness of the proposed scheme in terms of detection accuracy, computation time, and robustness against measurement uncertainty.\",\"PeriodicalId\":285444,\"journal\":{\"name\":\"Wavelet Theory\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wavelet Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.94554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wavelet Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.94554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault Detection, Diagnosis, and Isolation Strategy in Li-Ion Battery Management Systems of HEVs Using 1-D Wavelet Signal Analysis
Nowadays, the wavelet transformation and the 1-D wavelet technique provide valuable tools for signal processing, design, and analysis, in a wide range of control systems industrial applications, audio image and video compression, signal denoising, interpolation, image zooming, texture analysis, time-scale features extraction, multimedia, electrocardiogram signals analysis, and financial prediction. Based on this awareness of the vast applicability of 1-D wavelet in signal processing applications as a feature extraction tool, this paper aims to take advantage of its ability to extract different patterns from signal data sets collected from healthy and faulty input-output signals. It is beneficial for developing various techniques, such as coding, signal processing (denoising, filtering, reconstruction), prediction, diagnosis, detection and isolation of defects. The proposed case study intends to extend the applicability of these techniques to detect the failures that occur in the battery management control system, such as sensor failures to measure the current, voltage and temperature inside an HEV rechargeable battery, as an alternative to Kalman filtering estimation techniques. The MATLAB simulation results conducted on a MATLAB R2020a software platform demonstrate the effectiveness of the proposed scheme in terms of detection accuracy, computation time, and robustness against measurement uncertainty.