{"title":"Using Opaque Image Blur for Real-Time Depth-of-Field Rendering and Image-Based Motion Blur","authors":"M. Kraus","doi":"10.2013/3819","DOIUrl":"https://doi.org/10.2013/3819","url":null,"abstract":"While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively avoided by a decomposition into sub-images and the independent blurring of each sub-image. This decomposition, however, can result in rendering artifacts at silhouettes of objects. We propose a new blur filter that increases the opacity of all pixels to avoid these artifacts at the cost of physically less accurate but still plausible rendering results. The proposed filter is named “opaque image blur” and is based on a glow filter that is applied to the alpha channel. We present a highly efficient GPUbased pyramid algorithm that implements this filter for depth-of-field rendering. Moreover, we demonstrate that the opaque image blur can also be used to add motion blur effects to images in real time.","PeriodicalId":285068,"journal":{"name":"Journal of Virtual Reality and Broadcasting","volume":"167 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132897627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Head Tracking Based Avatar Control for Virtual Environment Teamwork Training","authors":"Stefan Marks, John A. Windsor, Burkhard Wünsche","doi":"10.5220/0003364702570269","DOIUrl":"https://doi.org/10.5220/0003364702570269","url":null,"abstract":"JVRB, 9(2012), no. 9. - Virtual environments (VE) are gaining in popularity and are increasingly used for teamwork training purposes, e.g., for medical teams. One shortcoming of modern VEs is that nonverbal communication channels, essential for teamwork, are not supported well. We address this issue by using an inexpensive webcam to track the user's head. This tracking information is used to control the head movement of the user's avatar, thereby conveying head gestures and adding a nonverbal communication channel. We conducted a user study investigating the influence of head tracking based avatar control on the perceived realism of the VE and on the performance of a surgical teamwork training scenario. Our results show that head tracking positively influences the perceived realism of the VE and the communication, but has no major influence on the training outcome.","PeriodicalId":285068,"journal":{"name":"Journal of Virtual Reality and Broadcasting","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128019647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasi-Convolution Pyramidal Blurring","authors":"M. Kraus","doi":"10.5220/0001094401550162","DOIUrl":"https://doi.org/10.5220/0001094401550162","url":null,"abstract":"JVRB, 6(2009), no. 6. - Efficient image blurring techniques based on the pyramid algorithm can be implemented on modern graphics\u0000hardware; thus, image blurring with arbitrary blur width is possible in real time even for large images. However, pyramidal blurring methods do not achieve the image quality provided by convolution filters; in particular, the shape of the corresponding filter kernel\u0000varies locally, which potentially results in objectionable rendering artifacts. In this work, a new analysis filter is designed that significantly reduces this variation for a particular pyramidal blurring technique. Moreover, the pyramidal blur algorithm is generalized to allow for a continuous variation of the blur width. Furthermore, an efficient implementation for programmable graphics hardware is presented. The proposed method is named “quasi-convolution pyramidal blurring” since the resulting effect is very close to image blurring based on a convolution filter for many applications.","PeriodicalId":285068,"journal":{"name":"Journal of Virtual Reality and Broadcasting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130107091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco Velasco, J. Torres, Alejandro León, Francisco Ortin
{"title":"Adaptive Cube Tessellation for Topologically Correct Isosurfaces","authors":"Francisco Velasco, J. Torres, Alejandro León, Francisco Ortin","doi":"10.5220/0002073602120219","DOIUrl":"https://doi.org/10.5220/0002073602120219","url":null,"abstract":"A communication system architecture (SA) for a vehicle which may be integrated into the vehicle's multiplexed electronic component communication system, and a process for communicating with the vehicle to provide information for and about the vehicle's operational status and coordinating the vehicle's activities. The communication system will include a multi-functional antenna system for the vehicle that will have the capability to receive AM/FM radio and television signals, and transmit and receive citizens band (CB) radio signals, satellite and microwave and cellular phone communications. The antenna may be installed as original equipment or as a back-fit part in the after-market. In either case the multi-functional antenna will be integrated with the vehicle's multiplexed electronic component communication system. The process for communicating with the vehicle will involve a communication service for which the vehicle's driver will enroll for and service will continue so long as maintenance fees are paid. The service will be capable of providing various levels of information transfer and coordination. The levels may include vehicle information such as (1) the need for servicing and location of the nearest service center with the necessary parts in stock, (2) routing, and (3) load brokering and coordination. The modular design of the system architecture (SA) will allow it to be employed with the vehicle platform that does not possess a full multiplexed electronic component communications system. The resulting vehicle, using an after-market application package, will be able to participate in some of the services.","PeriodicalId":285068,"journal":{"name":"Journal of Virtual Reality and Broadcasting","volume":"154 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122965465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"System Architecture of a Mixed Reality Framework","authors":"H. Seibert, P. Dähne","doi":"10.5220/0001354902000207","DOIUrl":"https://doi.org/10.5220/0001354902000207","url":null,"abstract":"JVRB, 3(2006), no. 7. - In this paper the software architecture of a framework which simplifies the development of applications in the area of Virtual and Augmented Reality is presented. It is based on VRML/X3D to enable rendering of audio-visual information. We extended our VRML rendering system by a device management system that is based on the concept of a data-flow graph. The aim of the system is to create Mixed Reality (MR) applications simply by plugging together small prefabricated software components, instead of compiling monolithic C++ applications. The flexibility and the advantages of the presented framework are explained on the basis of an exemplary implementation of a classic Augmented Realityapplication and its extension to a collaborative remote expert scenario.","PeriodicalId":285068,"journal":{"name":"Journal of Virtual Reality and Broadcasting","volume":"388 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2007-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126741148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}