Introduction to Quantum Field Theory最新文献

筛选
英文 中文
Anomalies in Path Integrals: The Fujikawa Method, Consistent vs. Covariant Anomalies, and Descent Equations 路径积分中的异常:藤川法,一致与协变异常,以及下降方程
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.057
{"title":"Anomalies in Path Integrals: The Fujikawa Method, Consistent vs. Covariant Anomalies, and Descent Equations","authors":"","doi":"10.1017/9781108624992.057","DOIUrl":"https://doi.org/10.1017/9781108624992.057","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"56 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121011534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularization, Definitions: Cut-off, Pauli–Villars, Dimensional Regularization, and General Feynman Parametrization 正则化,定义:截止,保利-维拉,维度正则化,和一般费曼参数化
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.035
{"title":"Regularization, Definitions: Cut-off, Pauli–Villars, Dimensional Regularization, and General Feynman Parametrization","authors":"","doi":"10.1017/9781108624992.035","DOIUrl":"https://doi.org/10.1017/9781108624992.035","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126057796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Operator Product Expansion, Renormalization of Composite Operators, and Anomalous Dimension Matrices 算子积展开,复合算子的重整化和反常维数矩阵
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.060
{"title":"The Operator Product Expansion, Renormalization of Composite Operators, and Anomalous Dimension Matrices","authors":"","doi":"10.1017/9781108624992.060","DOIUrl":"https://doi.org/10.1017/9781108624992.060","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"185 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122832754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Loop Renormalizability of Gauge Theories 规范理论的单环重整化
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.046
{"title":"One-Loop Renormalizability of Gauge Theories","authors":"","doi":"10.1017/9781108624992.046","DOIUrl":"https://doi.org/10.1017/9781108624992.046","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122168965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic Freedom. BRST Symmetry 渐近自由。BRST对称
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.047
{"title":"Asymptotic Freedom. BRST Symmetry","authors":"","doi":"10.1017/9781108624992.047","DOIUrl":"https://doi.org/10.1017/9781108624992.047","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129566762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantization of Gauge Fields, their Path Integral, and the Photon Propagator 规范场的量子化、路径积分与光子传播子
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.018
{"title":"Quantization of Gauge Fields, their Path Integral, and the Photon Propagator","authors":"","doi":"10.1017/9781108624992.018","DOIUrl":"https://doi.org/10.1017/9781108624992.018","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128273467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factorization and the Kinoshita–Lee–Nauenberg Theorem 因式分解和木下-李-诺恩伯格定理
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.055
{"title":"Factorization and the Kinoshita–Lee–Nauenberg Theorem","authors":"","doi":"10.1017/9781108624992.055","DOIUrl":"https://doi.org/10.1017/9781108624992.055","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"378 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124718339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical Applications of One-Loop Results I: Vacuum Polarization 单回路结果的物理应用I:真空极化
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.039
{"title":"Physical Applications of One-Loop Results I: Vacuum Polarization","authors":"","doi":"10.1017/9781108624992.039","DOIUrl":"https://doi.org/10.1017/9781108624992.039","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126920526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Loop Example and Multiloop Generalization 双环实例和多环泛化
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.041
{"title":"Two-Loop Example and Multiloop Generalization","authors":"","doi":"10.1017/9781108624992.041","DOIUrl":"https://doi.org/10.1017/9781108624992.041","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124149297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feynman Rules in x Space and p Space x空间和p空间中的费曼规则
Introduction to Quantum Field Theory Pub Date : 2019-10-17 DOI: 10.1017/9781108624992.013
{"title":"Feynman Rules in x Space and p Space","authors":"","doi":"10.1017/9781108624992.013","DOIUrl":"https://doi.org/10.1017/9781108624992.013","url":null,"abstract":"","PeriodicalId":283340,"journal":{"name":"Introduction to Quantum Field Theory","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128699289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信