{"title":"Drainage capillary pressure and resistivity index from short-wait porous plate experiments. 9th Middle East Geosciences Conference, GEO 2010.","authors":"M. Dernaika","doi":"10.3997/2214-4609-PDB.248.224","DOIUrl":"https://doi.org/10.3997/2214-4609-PDB.248.224","url":null,"abstract":"Reliable experimental capillary pressure (Pc) and electrical properties (RI) as functions of saturation (Sw) history are essential as inputs for static and dynamic modeling of a reservoir. The only technique that simultaneously gives both Pc and Sw-RI relationship as functions of saturation history, and does not rely on a model with underlying assumptions for calculation, is the standard equilibrium method. This method is also known as the porous plate technique. The only disadvantage with this method is that it is time consuming caused by the low flux through the diaphragm (porous plate).\u0000\u0000In this study we present drainage capillary pressure curves and resistivity index measured on reservoir rock samples by the standard equilibrium method at reservoir conditions. In parallel with this, a sister plug set has been analyzed by interrupting intermediate capillary displacement pressures before reaching equilibrium, with the objective of establishing Sw-RI relationship much faster. The results show that it is possible to establish identical Sw-RI relationship with a time-saving factor of three for the rock type under study.\u0000\u0000Both data sets are analyzed with an extrapolation routine as an attempt to also predict capillary equilibrium for the fast plug set, that is, capillary drainage curve. Numerical interpretation of the experiments has been done as an attempt to investigate factors and optimized design of the interrupted capillary displacement pressure sequence for various porosity and permeability classes.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124414020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Khuff Sequence KS4: High-resolution anatomy of a Middle Khuff grainstone package, Oman Mountains, Sultanate of Oman. In The Permo–Triassic Sequence of the Arabian Plate, Abstracts of the EAGE’s Third Arabian Plate Geology Workshop, Kuwait. Abstract,","authors":"M. Haase","doi":"10.3997/2214-4609.20144057","DOIUrl":"https://doi.org/10.3997/2214-4609.20144057","url":null,"abstract":"This outcrop study is part of a larger-scale project on the Saiq Formation in the Oman Mountains (outcrop analog of Khuff Formation), and focussed on the small-scale heterogeneities of the lower part of Khuff Sequence 4 (KS4). This interval is dominated by\u0000massive grainstones that at first glance seem extremely homogenous with distinct trough cross-bedding detectable in spite of strong dolomitization. Serrated gamma-ray patterns made small-scale cycle interpretations difficult. Therefore a very detailed facies and sequence analysis was necessary to decipher the vertical microfacies make-up of the grainstones and link it with potential pore types.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128330001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The opening of Neo-Tethys and the formation of the Khuff passive margin. In The Permo–Triassic Sequence of the Arabian Plate, Abstracts of the EAGE’s Third Arabian Plate Geology Workshop, Kuwait. Abstract,","authors":"A. Bell","doi":"10.3997/2214-4609.20144048","DOIUrl":"https://doi.org/10.3997/2214-4609.20144048","url":null,"abstract":"Any investigation of regional geology and palaeomagnetism in the Middle East will show that in the Permian a series of terranes separated from Gondwana and drifted north, opening the Neo-Tethys Ocean in their wake. To the north of these terranes, the Palaeo-Tethys Ocean closed and was largely subducted. Eventually in a non-synchronous movement but largely in Late Triassic and Early Jurassic times, these terranes docked with the northern margin of the former Palaeo-Tethys during the Cimmerian Orogeny.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133758916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Results of feasibility study of surface-to-borehole time-domain CSEM for water-oil fluid substitution in Ghawar Field, Saudi Arabia. 9th Middle East Geosciences Conference, GEO 2010.","authors":"D. Colombo","doi":"10.3997/2214-4609-pdb.248.435","DOIUrl":"https://doi.org/10.3997/2214-4609-pdb.248.435","url":null,"abstract":"Monitoring the advancement of flood from water injection in carbonate reservoirs is a major challenge for geophysical methods. Four-dimensional seismic has limited applicability to Middle East reservoirs with low gas-oil-ratio in carbonate rocks. On the other hand, electromagnetic (EM) methods hold the largest potential in such reservoirs due to the large resistivity contrast (over one order of magnitude) between oil-saturated and water-saturated reservoir rocks. Electromagnetic measurements, however, are noise sensitive thus special configurations need to be implemented to enable the detection of the extremely small variations of the electromagnetic field that are induced by oil being replaced by injection water. Controlled source EM transmitters on ground surface and borehole receivers represent the most effective layout configuration to improve the signal-to-noise ratio and to augment the aperture of investigation while addressing the signal-to-noise challenge through long recording times. Transient time-domain controlled-source EM techniques also provide broadband EM measurements and adapt to most geologic scenarios and to the conditions characterizing the Ghawar Field.\u0000\u0000An advanced 3-D modeling study was carried out by considering reservoir geometry from 3-D seismic interpretation, anisotropic resistivity distribution from tri-axial resistivity logs (acquired from surface to reservoir depth in the monitoring well) and time snapshots of fluid saturations modeled in reservoir simulators. The study allows the determination of EM field sensitivity to fluid saturation changes in reservoir conditions. Results indicate the vertical component of the electric field (Ez) is the most sensitive parameter to fluid replacement for a survey layout consisting of surface galvanic transmitters radially distributed around the well and a single, multi-level, borehole receiver. Repeated EM modeling over different time snapshots evidence the possibility to effectively monitor in three dimensions the resistivity changes occurring in the reservoir as the water flood front advances. Estimates of the EM field strength allow quantitative evaluations of the noise floor required to detect the variations of the electromagnetic field. These estimates will be used in a successive phase of the study where actual noise measurements and noise cancellation techniques will be tested in the field.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128669058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Movable oil identification and viscosity estimation in Lower Fars heavy-oil reservoir: A case study. 9th Middle East Geosciences Conference, GEO 2010.","authors":"K. Ahmed","doi":"10.3997/2214-4609-pdb.248.143","DOIUrl":"https://doi.org/10.3997/2214-4609-pdb.248.143","url":null,"abstract":"Reservoir fluid typing is one of the key parameters in well completion and field development planning. While the resistivity and nuclear logs provide basic information about fluid type, detailed but non-continuous fluid profiling is obtained from down-hole pressure-volume-temperature (PVT) sampling. The recent advancement in nuclear magnetic resonance (NMR) logging helps immensely for the continuous fluid identification.\u0000\u0000The Lower Fars Formation in Kuwait is a shallow unconsolidated sandstone reservoir containing heavy oil. The oil viscosity in the field varies from tens to thousands of centipoises both vertically and laterally. In-place PVT-quality fluid sampling with wireline formation testers in this low-pressure reservoir is quite challenging and time consuming. The deployment of advanced NMR logging technique was successful in identifying movable oil and providing a continuous oil viscosity profile.\u0000\u0000The presence of clay within heavy-oil sand affects fluid identification as the clay-bound water and heavy-oil NMR signals overlay and occur at fast relaxation domain. The standard diffusion method has poor resolution at early T2 domain and interpretation suffers from the effect of restricted diffusion. The advanced NMR logging tool provides measurement at multiple radial depths and the diffusion measurement is found useful in identifying movable oil in such environments. An integrated approach combining advanced NMR log with the nuclear and resistivity logs is used to identify mov-able oil and fluid-type variation and to estimate a continuous oil viscosity profile. NMR station measurements helped to enhance signal to noise ratio to increase confidence in log interpretation. The viscosity profile estimated using this approach correlates quite well with the PVT sample analysis available in the field. The next logical step is the optimization of workflow to produce consistent and more quantitative viscosity results, which may require lab NMR measurement of Lower Fars oil samples and core calibration.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128989403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Image petrophysics: A new approach to reservoir characterization. 9th Middle East Geosciences Conference, GEO 2010.","authors":"M. Frass","doi":"10.3997/2214-4609-pdb.248.218","DOIUrl":"https://doi.org/10.3997/2214-4609-pdb.248.218","url":null,"abstract":"Borehole imaging is the only tool to characterize from very small features like fractures or cross bedding up to major structural features. Since the late 1980s, borehole imaging based on resistivity measurements has been the only tool with the vertical and horizontal resolution, capable to detect very small bioturbation effects, cross bedding, vugs and or fractures as well as other structural features such as faults, unconformities or folds. The main question about this technology has been, how deep into the formation these small features really are and how they impact the hydrocarbon production.\u0000\u0000There are only a few methods to evaluate the fracture extension or the cross bedding effect within the sand bodies over the reservoirs: (1) a dynamic interference test among two or more wells and (2) the use of seismic attributes and neural networks to correlate with image logs and/or core data. From the images the fracture orientation, spacing, and aperture are obtained, which could be used to calculate fracture porosity and permeability as well as vugular porosity and permeability distribution around the well bore. Using image petrophysics, each resistivity curve is transformed into a porosity curve generating an azimuthal property distribution map defining the vertical and the horizontal anisotropy of each interval of the reservoir. Using this extremely powerful method and integrating with seismic attributes is the most advanced method to generate a 3-D reservoir model, in any reservoir.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123421653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controls from formation of early replacement dolomites and diagenetic anhydrite: Reactive transport modeling of dynamic interactions between geothermal and reflux circulation. 9th Middle East Geosciences Conference, GEO 2010.","authors":"A. Al-helal","doi":"10.3997/2214-4609-PDB.248.441","DOIUrl":"https://doi.org/10.3997/2214-4609-PDB.248.441","url":null,"abstract":"Geothermal heating and brine reflux have been invoked to explain early dolomitization of platform carbonates. Reactive transport modeling (RTM) suggests that geothermal convection can form a wedge-shaped dolomite body thickest at the platform margin, while reflux can form a tabular body which thins away from the brine source. In natural systems flow will respond to both drives and vary through time with changes in platform top conditions, for example as brine pools develop and disappear, and this is likely to significantly impact both dolomitization and associated anhydrite precipitation. A model technique (TOUGHREACT) is used to investigate the dynamic interactions of geothermal convection and brine reflux. Reflux of brines (85‰) rapidly restricts geothermal convection to the platform margin where only minor dolomitization occurs. Brines infiltrate to considerable depth, but fluid flux is most rapid at shallow depth due to reducing permeability with depth, permeability anisotropy, and diagenetic modification of permeability. Simulations suggest complete dolomitization to 150-200 m depth within 1 My beneath the brine source.\u0000\u0000Reflux dolomitization may enhance reservoir quality at shallow depth where associated anhydrite precipitation occludes porosity beneath the main dolomite body. The predicted anhydrite volume is almost twice that suggested by earlier simulations that do not incorporate heat transport. Increasing geothermal heat flux has little effect on geothermal circulation, but does accelerate reflux diagenesis. Cooling the platform top from 40 to 25°C slows reactions and displaces the anhydrite zone downwards so it may become completely decoupled from the brine source. \u0000\u0000When brine-generating conditions cease, subsurface brines will continue to flow and have been suggested as a drive for continued dolomitization (a variant termed “latent reflux”). Our simulations demonstrate that latent reflux does not form a significant amount of dolomite due to prior Mg2+ consumption at shallow depth, although as geothermal circulation becomes re-established, platform margin dolomitization rates increase. RTM offers considerable potential for improving our understanding of diagenetic reactions and their impact on reservoir quality in such hybrid flow systems. However, the veracity and utility of predictions depend on the specification of meaningful boundary and initial conditions, and the temperature regime appears to play a critical role in the dolomitization and anhydritization story.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129328733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-scale imaging process for computations of porosity and permeability from carbonate rocks. 9th Middle East Geosciences Conference, GEO 2010.","authors":"A. Grader","doi":"10.3997/2214-4609-PDB.248.160","DOIUrl":"https://doi.org/10.3997/2214-4609-PDB.248.160","url":null,"abstract":"Reservoir rock material collected during drilling is one of the main sources used to derive reservoir fluid transport and rock mechanics properties. Carbonate reservoirs may have heterogeneities that create multi porosity/permeability systems that are very difficult to describe, and to determine their flow properties. Conventional methods use laboratory procedures to perform experiments that directly or indirectly yield required rock properties. Some of these procedures, such as the determination of relative permeabilities, may take several months to perform. Also, in some cases, it is very difficult, or impractical to perform the experiments in the first place. Yet, as reservoir characterization is becoming ever more important for oil and gas production, a much larger portion of reservoir rocks, from cuttings to full cores, will need to be analyzed than what are currently evaluated. This study offers an example of the use of digital rock physics to determine porosity, permeability, and relative permeabilities for a carbonate sample using multi-scale imaging. Digital rock physics using the Lattice Boltzmann (LBM) for fluid dynamic calculations is at a point where for a proper digital pore space the resulting calculated flow properties are reasonably correct. The main issue facing digital rock physics is the need to up scale the computed properties to the scale of the core.\u0000\u0000The process presented in this study includes sample preparation, imaging, image processing, property computations, and property integration to the core scale. The sample is subjected to a descending scale of X-ray CT imaging, along with physical sub-sampling of the core. The descending size of scanning leads to increased resolution of the three-dimensional digital core, keeping the sample volumes registered in place. The resulting digital rocks are segmented and the pore structure is determined on the X-ray CT grid system. The resulting three-dimensional pore structure, that is the same as the actual pore structure subjected to resolution limits, is used as the input grid system for direct fluid dynamic computations that are second-order accurate representation of the Navier-Stokes fluid flow equations. These computations yield porosity, absolute permeability, relative permeabilities, and capillary pressure. In this study we focus only on porosity and permeabilities. Multiple scale imaging permits the estimation of permeability at the core scale.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126483329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in time-lapse reservoir monitoring using the new generation of radar satellites. 9th Middle East Geosciences Conference, GEO 2010.","authors":"A. Tamburini","doi":"10.3997/2214-4609-PDB.248.428","DOIUrl":"https://doi.org/10.3997/2214-4609-PDB.248.428","url":null,"abstract":"Surface deformation monitoring provides unique data for observing and measuring the performance of producing hydrocarbon reservoirs, for enhanced oil recovery (EOR) and for carbon dioxide capture and storage (CCS). To this aim, radar interferometry (InSAR) and, in particular, multi-interferogram permanent scatterer (PS) techniques are innovative, valuable and cost-effective tools. Depending on reservoir characteristics and depth, oil or gas production can induce surface subsidence or, in the cases of EOR and CCS, ground heave, potentially triggering fault reactivation and in some cases threatening well integrity.\u0000\u0000Mapping the surface effects of fault reactivation, due to either fluid extraction or injection, usually requires the availability of hundreds of measurement points per square kilometer with millimeter-level precision, which is time consuming and expensive to obtain using traditional monitoring techniques, but can be readily obtained with InSAR data. Moreover, more advanced InSAR techniques developed in the last decade are capable of providing millimeter precision, comparable to optical leveling, and a high spatial density of displacement measurements, over long periods of time without need of installing equipment or otherwise accessing the study area.\u0000\u0000Until recently, a limitation to the application of InSAR was the relatively long revisiting time (24 or 35 days) of the previous generation of C-band satellites (ERS1-2, Envisat, Radarsat). However, a new generation of X-band radar satellites (TerraSAR-X and the COSMO-SkyMed constellation), which have been operational since 2008, are providing significant improvements. TerraSAR-X has a repeat cycle of 11 days while the two sensors of the COSMO-SkyMed constellation have an effective repeat cycle of just 8 days (the third sensor has already been successfully launched and is presently in the calibration phase). With the launch of the fourth satellite of the constellation, COSMO-SkyMed will have a revisiting time of just 4 days, allowing “near real-time” applications. Additional advantages of the new X-band satellites are: a higher sensitivity to target displacement and a higher spatial resolution. In this study we present examples of X-band applications to reservoir monitoring with the aim of highlighting the technical features of the new sensors, the importance of continuous data acquisition and standardized acquisition policies for all InSAR applications.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130515249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Co-krigged porosity modeling exhibits better results than conventional regression analysis and multiattribute transform porosity models. 9th Middle East Geosciences Conference, GEO 2010.","authors":"A. Hussain","doi":"10.3997/2214-4609-pdb.248.051","DOIUrl":"https://doi.org/10.3997/2214-4609-pdb.248.051","url":null,"abstract":"Reservoir heterogeneity characterization is always a real challenge for the sub-surface professionals. Although there is no direct way to assess the true heterogeneity, still certain models can imitate the important features of variability. The spatial distribution of reservoir properties can be determined by stepping through a workflow which starts where standard workstation seismic and geologic interpretation end. In order to obtain the most accurate and detailed results, one must design a multidisciplinary workflow that quantitatively integrates all the relevant subsurface data. This study demonstrates the enhanced results of regression analysis and the multi-attribute transforms which are used for porosity prediction in one of the areas in Middle Indus Basin. The co-krigging method used in geostatistics has been applied to derive a combined effect of both the techniques. The dataset used for this study consists of the available well data including VSP and the petrophysical logs, a 3-D seismic volume consisting of both reflectivity and inversion data for attribute extraction. A conventional regression analysis using the single polynomial function incorporating the AI and the well porosities were used to extrapolate the average porosities away from the known control points. We then applied the multi-attribute transform using various seismic attributes and the well data. A cross-validation of porosity with the significant seismic attributes was done through neural networking. The results were then applied to derive initial porosity map. Both the results were integrated using co-krigging approach which involved creation and comparison of different variograms to get the enhanced version of porosity model. The co-krigged porosity maps showed a better delineation of good porosity zones as compared to initial porosity maps.","PeriodicalId":275861,"journal":{"name":"GeoArabia, Journal of the Middle East Petroleum Geosciences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114145521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}