{"title":"Real-time automatic tracking of hand motion in RGB videos using local feature SIFT","authors":"Richa Golash, Y. K. Jain","doi":"10.1504/IJISDC.2020.10037874","DOIUrl":"https://doi.org/10.1504/IJISDC.2020.10037874","url":null,"abstract":"This paper proposes a method for real-time visual tracking of moving hand in RGB videos without any segmentation process and background subtraction. We have used YCgCr converted version of YCbCr colour space for a more compact representation of the initial region of moving hand and then local feature SIFT to detect and track hand simultaneously. YCgCr has a high tendency for skin colour accretion and can effectively discriminate between the skin and non-skin colour regions. The approach demonstrates that using local features (SIFT) of only active region reduces the computation as well as make the method free from the challenges of freedom factor of hand and thus the methodology can detect the hand of any shape and size without being affected by background conditions. In general, researchers avoid using a normal camera for applications based on hand tracking, as RGB images are sensitive to illumination. Our work exhibits that the combination of YCgCr and two-stage feature matching through SIFT algorithm is successful in tracking non-rigid objects with less computation. The methodology is further evaluated with Kalman tracking in hand gesture recognition and is also compared with contemporary works.","PeriodicalId":272884,"journal":{"name":"International Journal of Intelligent Systems Design and Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130178907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Breast cancer data classification using deep neural network","authors":"V. Sharma, Saumendra Kumar Mohapatra, M. Mohanty","doi":"10.1504/IJISDC.2020.10037864","DOIUrl":"https://doi.org/10.1504/IJISDC.2020.10037864","url":null,"abstract":"Artificial neural networks and their variants play an important role in the analysis and classification of different biomedical data. Deep learning is an advanced machine learning approach which has been used in many applications in the last few years. Worldwide breast cancer is a major disease for women; it is one of the most challenging jobs to detect at an early stage. The authors in this work have taken an attempt to classify the breast cancer data collected from the UCI machine learning repository. Malignant and benign two different types of breast cancer tumours are classified using deep neural network (DNN). Before classification two pre-processing steps are done for improving the accuracy. The correlation and one-hot encoding of the dataset was done for getting some relevant features that can be used as the input to the DNN. Around 94% of classification accuracy is achieved by using a six-layer DNN classifier. The result is also compared with some earlier works and it is found that the proposed classifier is providing better results as compared to others.","PeriodicalId":272884,"journal":{"name":"International Journal of Intelligent Systems Design and Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114656123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}