{"title":"Clarifying Special Relativity","authors":"R. Sauerheber","doi":"10.5772/INTECHOPEN.86401","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86401","url":null,"abstract":"Special relativity for light requires substantial correction. The notion that time dilates for observers in motion has been disproven theoretically, experimentally, and mathematically. Absolute time is not altered by the motion of objects or human activ-ity. The original concept used distance and light velocity improperly to compute time. When the displacement of objects in relation to the traveling direction of a photon of light is considered properly, both stationary and moving observers compute time for any particular event that is equal. Light photons travel at intrinsic speed c in the propagation direction but have component velocities less than c. Although light velocity c cannot be altered by motion of its source in the propagation direction, photons from a lateral moving source experience a lateral velocity component and angle travel from the source at speed c in that direction. Due to motion of the earth in its orbit, objects that are seen are images from a former location when the light departed. More or less time is required for light to traverse objects in motion than when stationary. This is not due to dilation of absolute time. Fixed light speed ensures that differing distances require differing times for light to travel.","PeriodicalId":270584,"journal":{"name":"Progress in Relativity","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129321235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hot Compression Tests Using Total Lagrangian SPH Formulation in Energy-Based Framework","authors":"Kadiata Ba","doi":"10.5772/INTECHOPEN.85930","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85930","url":null,"abstract":"Limitations of the finite element method (FEM) in some cases involving large deformations as in forging or high compression tests are overcome nowadays by meshless methods such as the smoothed particle hydrodynamic (SPH) method. This paper presents a corrected total Lagrangian SPH formulation for problems encoun-tering large deformations in solid mechanics. The continuum is modeled as a Hamiltonian system of particles (energy-based framework). The total Lagrangian formulation proposed overcomes some problems faced by standard SPH in simulating solid mechanic problems such as tensile instability. Numerical applications compared with experimental results are presented to show the capabilities of this novel formulation.","PeriodicalId":270584,"journal":{"name":"Progress in Relativity","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124717852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}