Progress in Solar Energy and Engineering Systems最新文献

筛选
英文 中文
Energy and exergy analysis of flat plate solar collector for three working fluids, under the same conditions 相同条件下三种工质平板太阳能集热器的能量与火用分析
Progress in Solar Energy and Engineering Systems Pub Date : 2017-12-31 DOI: 10.18280/psees.010101
M. A. Haghghi, S. M. Pesteei
{"title":"Energy and exergy analysis of flat plate solar collector for three working fluids, under the same conditions","authors":"M. A. Haghghi, S. M. Pesteei","doi":"10.18280/psees.010101","DOIUrl":"https://doi.org/10.18280/psees.010101","url":null,"abstract":"The growth and expansion of the population, has caused increased the use of energy in the last few years. One of the cleanest and renewable sources of the energy is the solar energy. The solar energy can be collected by solar collectors. One of the solar collectors is the flat plate solar collector (FPC), that it is used in domestic utilization. Use of various Nano-fluids to improve the thermal properties of solar collectors, considered as one of the most effective method to optimize the flat plate collectors. In this study, a FPC in terms of energy and exergy, for three fluids (water, air and TiO2 Nano-fluid) have been investigated. According to the results obtained and under the same conditions, destruction exergy of water is more than other two fluids and TiO2 Nano-fluid has the least amount of destruction exergy. Also, by increasing in the total radiation on tilted surface (Gt) TiO2 Nano-fluid’s exergy efficiency is more than the other fluids in this study. By increasing ambient temperature, the exergy efficiency decreases, that water has the most variation. Due to the temperature range of the inlet working fluid to the collector’s tubes, observed that outlet temperature of the TiO2 Nano-fluid is about 50°C higher than when water enters it. Therefore, the initial statement about Nano-fluids is confirmed. In appropriate conditions, the collector’s efficiency is between 45% - 50%, thus FPC is one of the best devices for domestic utilization.","PeriodicalId":263430,"journal":{"name":"Progress in Solar Energy and Engineering Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116821543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信