{"title":"A Recurrence Analysis of Multiple African Easterly Waves during Summer 2006","authors":"T. Reyes, B. Shen","doi":"10.5772/intechopen.86859","DOIUrl":"https://doi.org/10.5772/intechopen.86859","url":null,"abstract":"Accurate detection of large-scale atmospheric tropical waves, such as African easterly waves (AEWs), may help extend lead times for predicting tropical cyclone (TC) genesis. Since observed AEWs have comparable but slightly different periods showing spatial and temporal variations, local analysis of frequencies and amplitudes of AEWs is crucial for revealing the role of AEWs in the modulation of TC genesis. To achieve this goal, we investigate the recurrence plot (RP) method. A recurrence is defined when the trajectory of a state returns to the neighborhood of a previously visited state. To verify implementation of the RP method in Python and its capability for revealing a transition between different types of solutions, we apply the RP to analyze several idealized solutions, including periodic, quasiperiodic, chaotic and limit cycle solutions, and various types of solutions within the three- and five-dimensional Lorenz models. We then extend the RP analysis to two datasets from the European Centre for Medium-Range Weather Forecasts global reanalysis and global mesoscale model data in order to reveal the recurrence of multiple AEWs during summer 2006. Our results indicate that the RP analysis effectively displays the major features of time-varying oscillations and the growing or decaying amplitudes of multiple AEWs.","PeriodicalId":257471,"journal":{"name":"Current Topics in Tropical Cyclone Research","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114675002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Lupo, Brendan Heaven, Jack Matzen, J. Rabinowitz
{"title":"The Interannual and Interdecadal Variability in Tropical Cyclone Activity: A Decade of Changes in the Climatological Character","authors":"A. Lupo, Brendan Heaven, Jack Matzen, J. Rabinowitz","doi":"10.5772/intechopen.93028","DOIUrl":"https://doi.org/10.5772/intechopen.93028","url":null,"abstract":"During the last decade, there has been concern that the frequency or intensity of tropical cyclones (TCs) has increased. Also, climate models have shown varying results regarding the future occurrence and intensities of TC. Previous research from this group showed there is significant interannual and interdecadal variability in TC occurrence and intensity for some tropical ocean basins and sub-basins. This work examines global TC occurrence and intensity from 2010 to 2019 and compares this period to the same quantities from 1980 to 2009. The data used here are obtained from publicly available TC archives. Globally, the number of TC occurring over the latest decade is similar to the previous decade. However, while the 40-year trend shows an increase in TC, only intense hurricanes have shown an increase. The Atlantic Ocean and North Indian Ocean Basins show increases in TC activity, especially intense storms. The Southern Hemisphere and West Pacific Region show decreases in TC activity. In the West Pacific, intense TC did not increase, but the fraction of storms classified as intense increased. Only East Pacific TC activity showed no significant short- or long-term trends. Interannual and interdecadal variability in each sub-basin was found and there were some differences with previous work.","PeriodicalId":257471,"journal":{"name":"Current Topics in Tropical Cyclone Research","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115790850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Climate Models Accumulated Cyclone Energy Analysis","authors":"Sullyandro Oliveira Guimarães","doi":"10.5772/intechopen.91268","DOIUrl":"https://doi.org/10.5772/intechopen.91268","url":null,"abstract":"Looking at the connection between tropical cyclones and climate changes due to anthropogenic and natural effects, this work aims for information on understanding and how physical aspects of tropical cyclones may change, with a focus on accumulated cyclone energy (ACE), in a global warming scenario. In the present climate evaluation, reasonable results were obtained for the ACE index; the Coupled Model Intercomparison Project Phase 6 (CMIP6) models with lower horizontal and vertical resolution showed more difficulties in representing the index, while Max Planck Institute model demonstrated ability to simulate the climate with more accurate, presenting values of both ACE and maximum temperature close to NCEP Reanalysis 2. The MPI-ESM1-2-HR projections suggest that the seasons and their interannual variations in cyclonic activity will be affected by the forcing on the climate system, in this case, under the scenario of high GHG emissions and high challenges to mitigation SSP585. The results indicate to a future with more chances of facing more tropical cyclone activity, plus the mean increase of 3.1°C in maximum daily temperatures, and more heavy cyclones and stronger storms with more frequency over the North Atlantic Ocean may be experimented, as indicated by other studies.","PeriodicalId":257471,"journal":{"name":"Current Topics in Tropical Cyclone Research","volume":"188 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115996805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response of the Coastal Ocean to Tropical Cyclones","authors":"Zhiyuan Wu, Mack Conde","doi":"10.5772/intechopen.90620","DOIUrl":"https://doi.org/10.5772/intechopen.90620","url":null,"abstract":"The Northwest Pacific and the South China Sea region are the birthplaces of most monsoon disturbances and tropical cyclones and are an important channel for the generation and transmission of water vapor. The Northwest Pacific plays a major role in regulating interdecadal and long-term changes in climate. China experiences the largest number of typhoon landfalls and the most destructive power affected by typhoons in the world. The hidden dangers of typhoon disasters are accelerating with the acceleration of urbanization, the rapid development of economic construction and global warming. The coastal cities are the most dynamic and affluent areas of China’s economic development. They are the strong magnetic field that attracts international capital in China, and are also the most densely populated areas and important port groups in China. Although these regions are highly developed, they are vulnerable to disasters. When typhoons hit, the economic losses and casualties caused by gale, heavy rain and storm surges were particularly serious. This chapter reviews the response of coastal ocean to tropical cyclones, included sea surface temperature, sea surface salinity, storm surge simulation and extreme rainfall under the influence of tropical cyclones.","PeriodicalId":257471,"journal":{"name":"Current Topics in Tropical Cyclone Research","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116309807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NASA Global Satellite and Model Data Products and Services for Tropical Cyclone Research","authors":"Zhong Liu, D. Meyer, C. Shie, A. Li","doi":"10.5772/intechopen.89720","DOIUrl":"https://doi.org/10.5772/intechopen.89720","url":null,"abstract":"The lack of observations over vast tropical oceans is a major challenge for tropical cyclone research. Satellite observations and model reanalysis data play an important role in filling these gaps. Established in the mid-1980s, the Goddard Earth Sciences Data and Information Services Center (GES DISC), as one of the 12 NASA data centers, archives and distributes data from several Earth science disciplines such as precipitation, atmospheric dynamics, atmospheric composition, and hydrology, including well-known NASA satellite missions (e.g., TRMM, GPM) and model assimilation projects (MERRA-2). Acquiring datasets suitable for tropical cyclone research in a large data archive is a challenge for many, especially for those who are not familiar with satellite or model data. Over the years, the GES DISC has developed user-friendly data services. For example, Giovanni is an online visualization and analysis tool, allowing users to visualize and analyze over 2000 satellite- and model-based variables with a Web browser, without downloading data and software. In this chapter, we will describe data and services at the GES DISC with emphasis on tropical cyclone research. We will also present two case studies and discuss future plans.","PeriodicalId":257471,"journal":{"name":"Current Topics in Tropical Cyclone Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130609460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Fedorova, V. Levit, Lucas Carvalho Vieira Cavalcante
{"title":"Impacts of Tropical Cyclones in the Northern Atlantic on Adverse Phenomena Formation in Northeastern Brazil","authors":"N. Fedorova, V. Levit, Lucas Carvalho Vieira Cavalcante","doi":"10.5772/intechopen.88804","DOIUrl":"https://doi.org/10.5772/intechopen.88804","url":null,"abstract":"Tropical cyclone (TC) impacts on adverse phenomena in the tropical region of Northeastern Brazil (NEB) have been analyzed. TC influence on fog and rain formation was not described in the previous papers. The main goal of the chapter is to evaluate the existence of such influence and thus to improve the weather forecasting in this area. TC information from the NHC of the NOAA was used. METAR and SYNOP data were used for the adverse phenomena study. Analysis of the synoptic systems was based on different maps at the pattern levels and on satellite images. These maps were elaborated using reanalysis data from the ECMWF. Thermodynamic analysis was also used. Middle tropospheric cyclonic vortexes (MTCV) in the tropical region of the Southern Atlantic were described recently. Five from 10 MTCVs were associated with tropical cyclones and disturbances in the Northern Atlantic. Circulation patterns between TC and synoptic systems at the NEB are described. These circulations create sinking over the BNE and, as a result, form fog, mist and weak rain in the BNE during TC days. Mechanisms of TC influence on weather formation in the BNE are presented. This information is important for improving weather forecasting methods.","PeriodicalId":257471,"journal":{"name":"Current Topics in Tropical Cyclone Research","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114918449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Use of a Spiral Band Model to Estimate Tropical Cyclone Intensity","authors":"B. Yurchak","doi":"10.5772/INTECHOPEN.88683","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88683","url":null,"abstract":"Spiral cloud-rain bands (SCRBs) are some of the most distinguishing features inherent in satellite and radar images of tropical cyclones (TC). The subject of the proposed research is the finding of a physically substantiated method for estimation of the TC’s intensity using SCRBs’ configuration parameters. To connect a rainband pattern to a physical process that conditions the spiraling feature of a rainband, it is assumed that the rainband’s configuration near the core of a TC is governed primarily by a streamline. In turn, based on the distribution of primarily forces in a TC, an analytical expression as a combination of hyperbolic and logarithmic spirals (HLS) for the description of TC spiral streamline (rainband) is retrieved. Parameters of the HLS are determined by the physical parameters of a TC, particularly, by the maximal wind speed (MWS). To apply this theoretical finding to practical estimation of the TC’s intensity, several approximation techniques are developed to “convert” rainband configuration to the estimation of the MWS. The developed techniques have been tested by exploring satellite infrared imageries and airborne and coastal radar data, and the outcomes were compared with in situ measurements of wind speeds and the best track data of tropical cyclones.","PeriodicalId":257471,"journal":{"name":"Current Topics in Tropical Cyclone Research","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115573570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}