Zahra Barreto, Areej Fatima, Tuba Tariq, A. Zafar, M. S. Saif, Amina Zafar, Areeba Yousaf, Huang Xue, M. Hasan
{"title":"A comprehensive review on biogenically synthesized inorganic nanoparticles and their applications in anticancer activities","authors":"Zahra Barreto, Areej Fatima, Tuba Tariq, A. Zafar, M. S. Saif, Amina Zafar, Areeba Yousaf, Huang Xue, M. Hasan","doi":"10.58567/bab02010004","DOIUrl":"https://doi.org/10.58567/bab02010004","url":null,"abstract":"The progression in nanotechnology has revolutionized the biomedical sciences for diagnosis and treatment of diseases like cancer. There have been many kinds of nanomaterials but Inorganic nanomaterials have been considered potential candidates for anticancer activities due to their high biocompatibility, less toxicity, high stability, and high precision in targeting affected cells. Several synthesis approaches have been used to prepared these nanoparticles, such as physical, chemical, and biogenic methods. Due to higher toxicity and adverse effects of chemical methods, eco-friendly way such as biosynthesized inorganic nanomaterials have attained much attention for multiple application particularly treatment of diseases. This review presents a comprehensive and updated knowledge (2015-2023) regarding the cancer treatment. The article first categorizes biogenically synthesized inorganic nanoparticles into three main groups: metallic nanoparticles, metal oxide nanoparticles, and quantum dots and then successful stories related to cancer treatment. This will also provide very effective platform for researchers and academia to detail the biogenically synthesized inorganic nanoparticles’ morphology, their characterization, targeted cancer cells.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139350359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of nanodrugs in the treatment of cardiovascular diseases","authors":"Qiang Xie, Hongmei Yang, Wenjie Shi","doi":"10.58567/bab02010003","DOIUrl":"https://doi.org/10.58567/bab02010003","url":null,"abstract":"Cardiovascular disease is still a disease with high incidence rate and mortality. Although advanced technology continues to increase our understanding of cardiovascular disease, its diagnosis and treatment still have limitations. As an emerging interdisciplinary method, nanotechnology has shown enormous clinical application potential. Nanomaterials have unique physical and chemical properties, which help to improve the sensitivity and specificity of biosensor technology and molecular imaging technology in the diagnosis of cardiovascular diseases. This paper first summarizes the versatility of nanomaterials, the physicochemical adjustability of biomolecular engineering, the design strategy of nanoparticles in cardio cerebral Vascular disease, the application of nanomaterials in the diagnosis and treatment of common cardiovascular diseases, and the use of nanomaterials can significantly improve the diagnostic sensitivity, specificity and therapeutic effect. Subsequently, the article summarized various nanomaterials. Finally, the article demonstrated the potential of the antioxidant/anti-inflammatory and photoelectric/photothermal properties of nanomaterials to be directly applied to the treatment of cardiovascular diseases.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"40 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130214343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overcoming the challenge: cell-penetrating peptides and membrane permeability","authors":"Yuan Gu, Long Wu, Y. Hameed, M. Nabi-Afjadi","doi":"10.58567/bab02010002","DOIUrl":"https://doi.org/10.58567/bab02010002","url":null,"abstract":"Cell-penetrating peptides (CPPs) have emerged as a promising strategy for enhancing the membrane permeability of bioactive molecules, particularly in the treatment of central nervous system diseases. CPPs possess the ability to deliver a diverse array of bioactive molecules into cells using either covalent or non-covalent approaches, with a preference for non-covalent methods to preserve the biological activity of the transported molecules. By effectively traversing various physiological barriers, CPPs have exhibited significant potential in preclinical and clinical drug development. The discovery of CPPs represents a valuable solution to the challenge of limited membrane permeability of bioactive molecules and will continue to exert a crucial influence on the field of biomedical science.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125927947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Novel Tumor Therapeutics Based on Nanomaterial Technologies","authors":"Chen Li, Yi Liu","doi":"10.58567/bab02010001","DOIUrl":"https://doi.org/10.58567/bab02010001","url":null,"abstract":"Cancer is the leading cause of death in the world, throughout the global researches of cancer treatment, people have a deeper understanding of cancer, and the treatment methods are constantly breakthrough. Conventional surgery, chemotherapy and radiotherapy have serious adverse effects and patients' quality of life is not significantly improved. Now, photodynamic therapy, photothermal therapy andthermodynamic therapy based on nanotechnology and materials technology are booming, and the development of these novel cancer therapies and their combination therapies brings more possibilities for cancer treatment. This review summarizes the research progress of novel cancer therapies based on nano and material technology from the aspects of mechanism of action and therapeutic methods, hoping to provide reference for their clinical application.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122351195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An DNA Enzyme Electrochemiluminescence Biosensor for Ultra-sensitive Detection of Pb2+ Based on CdS/MoS2 Joint Amplification","authors":"Rui Yang","doi":"10.58567/bab01010003","DOIUrl":"https://doi.org/10.58567/bab01010003","url":null,"abstract":"Lead (Pb) is one of the most serious heavy metals to human health and ecological environment. Excessive lead can lead brain retardation and liver and kidney damage. In this work, a novel electrochemiluminescence (ECL) biosensor based on CdS quantum dots (CdS QDs)/MoS2 enzyme assist multiple amplification and DNA enzyme was designed to achieve high sensitivity detection of Pb2+. AuNPs-PDDA-MoS2 complex was synthesized as sensing substrate. The thiol-labeled T30695 DNA was assembled on the surface of the electrode via Au-S bonds, following which the amino-labeled ends of the DNA were linked to the CdS QDs by the formation of amide bonds. In the presence of Pb2+, the G bases of DNA sequence formed G- tetraplex (G4) structure, DNA enzymes were then further synthesized. The catalytic oxidation of H2O2 by DNA enzyme and AuNPs-MoS2 composite resulted in a significant decrease of electrochemiluminescence of CdS QDs with H2O2. The detection range of the biosensor was 1.0×10-14 - 5.0×10-11mol/L (R = 0.9992) with a detection limit of 1×10-15 mol/L. This biosensor can detect Pb2+ in real water samples with satisfactory results.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121890511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an Electrochemical Aptasensor for Ultrasensitive Detection of Tetracycline in Eggs","authors":"Jianqi Li, Xin Jin","doi":"10.58567/bab01010002","DOIUrl":"https://doi.org/10.58567/bab01010002","url":null,"abstract":"In recent years, in order to prevent the occurrence of various diseases, the fncscrambled misuse of antibiotics is quite serious, and the residues of antibiotics such as tetracycline in eggs can also cause damage to human health. A double-stranded DNA probe modified with ferrocene was immobilized onto a gold nanoparticle modified substrate. Tetracycline was added to form a strong affinity binding between the target and the aptamer. During this process, the complementary strand was detached from the electrode surface. Therefore, the measured electrical signal attenuates with the emergence of the target. The linear response of tetracycline concentration to the signal ranged from 0.0005μM~50μM. The fabricated biosensor showed excellent selectivity. The accurate detection limit can be as low as 0.5 nm. Further, in the determination of tetracycline concentrations in water and egg samples, the fabricated biosensor showed excellent selectivity. Furthermore, the applicability of the developed sensor was demonstrated in the determination of tetracycline concentrations in egg samples. The spiking recoveries ranged from 96.18% to 102.75% which reached acceptable level. This detection sensor is simple, time-saving, selective and efficient, which can provide potential services in food production safety, environmental detection and so on.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"101 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117291742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noninvasive Deep-Tissue Temperature Monitoring Based on Magnetic Mediated Thermoacoustics","authors":"Siyu Liu","doi":"10.58567/bab01010005","DOIUrl":"https://doi.org/10.58567/bab01010005","url":null,"abstract":"Noninvasive acquisition of deep tissue temperature has important applications in home health monitoring, hyperthermia safety control, and other domains. In this work, we present here a novel magnetically mediated thermoacoustic temperature measurement method. Utilizing coil to stimulate amplitude modulated magnetic field and ultrasound transducer to receive the generated thermoacoustic wave from the inserted magnetic nanoparticles. Benefiting from the high sensitivity of thermoacoustic emission from nanoparticles and the deep penetration capability of both magnetic field and ultrasound propagation, the proposed thermoacoustic temperature measurement system enables a high measurement accuracy of 0.5 degrees Celsius in real time. This work potentially facilitates further development of closed loop magnetic hyperthermia for practical clinical applications.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125121740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of 16 kDa Protein from Mycobacterium Tuberculosis Using Interdigitated Electrode","authors":"S. S. Rani, S. Gopinath","doi":"10.58567/bab01010001","DOIUrl":"https://doi.org/10.58567/bab01010001","url":null,"abstract":"In the past, researchers investigated the immune response acting against mycobacterial antigens in tuberculosis (TB). Several ELISA tests have been conducted for the diagnosis of tuberculosis. Other researchers manipulated 16 kDa antigen from Mycobacterium Tuberculosis to develop a tuberculosis diagnostic test while some others studied the subspecies of M. tuberculosis. In the present study, we explored the possibilities of detecting 16 kDa protein derived from M. tuberculosis, on an interdigitated electrode (IDE). Measurements with Electrochemical impedance spectroscopy and current-volt systems were demonstrated using antibody as the probe. Further, the involvement of gold nanoparticle for the signal-enhancement and high-performance are evidenced. The specificity in the serum containing samples is used to show the clinical relevancy. 16 kDa antigen used in this experiment is highly reliable for TB diagnosis as it largely expresses and can be implemented in other sensing system.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128378687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongyan Zheng, Shuoke Qiu, Lei Li, Binglong Li, Meng Zhang
{"title":"Polymers containing natural plant phenolic compounds for peripheral nerve injury","authors":"Tongyan Zheng, Shuoke Qiu, Lei Li, Binglong Li, Meng Zhang","doi":"10.58567/bab01010004","DOIUrl":"https://doi.org/10.58567/bab01010004","url":null,"abstract":"Peripheral nerve injury is a serious and disabling disease prevalent in the world. It caused by trauma is often accompanied with soft tissue injuries, fractures, infections, etc., and can cause permanent damage. The treatment methods of peripheral nerve injury mainly include traditional microsurgical repair, neurotrophic drug treatment, as well as cuttingedge nerve conduit treatment, nerve stimulation, cell therapy, etc. However, more than 30% of patients with peripheral nerve injury still have poor recovery, including partial loss or complete loss of motor and/or sensory function, muscle atrophy,chronic pain and severe disability, among can lead to permanent disease. Phenolic compounds are secondary metabolites which is the most abundant in plants, consisting of an aromatic ring and one or more hydroxyl substituents, the main groups including flavonoids, phenolic acids, tannins, stilbene and lignans. A lot of studies have shown that natural phenolic compounds have various properties, such as antioxidant, anti-infective, anticancer, anti-inflammatory, etc., and have broad applications in the prevention of heart disease, cancer, diabetes, oxidative stress-related diseases, and neuroprotection prospect. This review discusses the potential applications and molecular mechanisms of natural phenolic compounds its polymer derivatives in the treatment of peripheral nerve injury.","PeriodicalId":257097,"journal":{"name":"Biomaterials and Biosensors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129746836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}