Deep Learning on Graphs最新文献

筛选
英文 中文
Advanced Applications in Graph Neural Networks 图神经网络的高级应用
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.021
{"title":"Advanced Applications in Graph Neural Networks","authors":"","doi":"10.1017/9781108924184.021","DOIUrl":"https://doi.org/10.1017/9781108924184.021","url":null,"abstract":"","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128487913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Topics in Graph Neural Networks 图神经网络高级主题
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.020
{"title":"Advanced Topics in Graph Neural Networks","authors":"","doi":"10.1017/9781108924184.020","DOIUrl":"https://doi.org/10.1017/9781108924184.020","url":null,"abstract":"","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116169299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph Neural Networks in Natural Language Processing 自然语言处理中的图神经网络
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.015
Bang Liu, Lingfei Wu
{"title":"Graph Neural Networks in Natural Language Processing","authors":"Bang Liu, Lingfei Wu","doi":"10.1017/9781108924184.015","DOIUrl":"https://doi.org/10.1017/9781108924184.015","url":null,"abstract":"Natural language processing (NLP) and understanding aim to read from unformatted text to accomplish different tasks. While word embeddings learned by deep neural networks are widely used, the underlying linguistic and semantic structures of text pieces cannot be fully exploited in these representations. Graph is a natural way to capture the connections between different text pieces, such as entities, sentences, and documents. To overcome the limits in vector space models, researchers combine deep learning models with graph-structured representations for various tasks in NLP and text mining. Such combinations help to make full use of both the structural information in text and the representation learning ability of deep neural networks. In this chapter, we introduce the various graph representations that are extensively used in NLP, and show how different NLP tasks can be tackled from a graph perspective. We summarize recent research works on graph-based NLP, and discuss two case studies related to graph-based text clustering, matching, and multihop machine reading comprehension in detail. Finally, we provide a synthesis about the important open problems of this subfield.","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115990554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Index 指数
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.023
{"title":"Index","authors":"","doi":"10.1017/9781108924184.023","DOIUrl":"https://doi.org/10.1017/9781108924184.023","url":null,"abstract":"","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"152 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116456942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph Neural Networks 图神经网络
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.009
Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, Le Song
{"title":"Graph Neural Networks","authors":"Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, Le Song","doi":"10.1017/9781108924184.009","DOIUrl":"https://doi.org/10.1017/9781108924184.009","url":null,"abstract":"Deep Learning has become one of the most dominant approaches in Artificial Intelligence research today. Although conventional deep learning techniques have achieved huge successes on Euclidean data such as images, or sequence data such as text, there are many applications that are naturally or best represented with a graph structure. This gap has driven a tide in research for deep learning on graphs, among them Graph Neural Networks (GNNs) are the most successful in coping with various learning tasks across a large number of application domains. In this chapter, we will systematically organize the existing research of GNNs along three axes: foundations, frontiers, and applications. We will introduce the fundamental aspects of GNNs ranging from the popular models and their expressive powers, to the scalability, interpretability and robustness of GNNs. Then, we will discuss various frontier research, ranging from graph classification and link prediction, to graph generation and transformation, graph matching and graph structure learning. Based on them, we further summarize the basic procedures which exploit full use of various GNNs for a large number of applications. Finally, we provide the organization of our book and summarize the roadmap of the various research topics of GNNs. Lingfei Wu JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu Peng Cui Department of Computer Science, Tsinghua University, e-mail: cuip@tsinghua.edu.cn Jian Pei Department of Computer Science, Simon Fraser University, e-mail: jpei@cs.sfu.ca Liang Zhao Department of Computer Science, Emory University, e-mail: liang.zhao@emory.edu Le Song Mohamed bin Zayed University of Artificial Intelligence, e-mail: dasongle@gmail.com","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125995708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 78
Deep Learning on Graphs: An Introduction 图上的深度学习:导论
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.003
{"title":"Deep Learning on Graphs: An Introduction","authors":"","doi":"10.1017/9781108924184.003","DOIUrl":"https://doi.org/10.1017/9781108924184.003","url":null,"abstract":"","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128322969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph Neural Networks for Complex Graphs 复杂图的图神经网络
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.012
{"title":"Graph Neural Networks for Complex Graphs","authors":"","doi":"10.1017/9781108924184.012","DOIUrl":"https://doi.org/10.1017/9781108924184.012","url":null,"abstract":"In the earlier chapters, we have discussed graph neural network models focusing on simple graphs where the graphs are static and have only one type of nodes and one type of edges. However, graphs in many real-world applications are much more complicated. They typically have multiple types of nodes, edges, unique structures, and often are dynamic. As a consequence, these complex graphs present more intricate patterns that are beyond the capacity of the aforementioned graph neural network models on simple graphs. Thus, dedicated efforts are desired to design graph neural network models for complex graphs. These efforts can significantly impact the successful adoption and use of GNNs in a broader range of applications. In this chapter, using complex graphs introduced in Section 2.6 as examples, we discuss the methods to extend the graph neural network models to capture more sophisticated patterns. More specifically, we describe more advanced graph filters designed for complex graphs to capture their specific properties.","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128295450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable Graph Neural Networks 可扩展图神经网络
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.011
{"title":"Scalable Graph Neural Networks","authors":"","doi":"10.1017/9781108924184.011","DOIUrl":"https://doi.org/10.1017/9781108924184.011","url":null,"abstract":"","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132389463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond GNNs: More Deep Models on Graphs 超越GNNs:图上的更深度模型
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.013
{"title":"Beyond GNNs: More Deep Models on Graphs","authors":"","doi":"10.1017/9781108924184.013","DOIUrl":"https://doi.org/10.1017/9781108924184.013","url":null,"abstract":"","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121068760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Graph Neural Networks 鲁棒图神经网络
Deep Learning on Graphs Pub Date : 2021-09-30 DOI: 10.1017/9781108924184.010
{"title":"Robust Graph Neural Networks","authors":"","doi":"10.1017/9781108924184.010","DOIUrl":"https://doi.org/10.1017/9781108924184.010","url":null,"abstract":"As the generalizations of traditional DNNs to graphs, GNNs inherit both advantages and disadvantages of traditional DNNs. Like traditional DNNs, GNNs have been shown to be effective in many graph-related tasks such as nodefocused and graph-focused tasks. Traditional DNNs have been demonstrated to be vulnerable to dedicated designed adversarial attacks (Goodfellow et al., 2014b; Xu et al., 2019b). Under adversarial attacks, the victimized samples are perturbed in such a way that they are not easily noticeable, but they can lead to wrong results. It is increasingly evident that GNNs also inherit this drawback. The adversary can generate graph adversarial perturbations by manipulating the graph structure or node features to fool the GNN models. This limitation of GNNs has arisen immense concerns on adopting them in safety-critical applications such as financial systems and risk management. For example, in a credit scoring system, fraudsters can fake connections with several high-credit customers to evade the fraudster detection models; and spammers can easily create fake followers to increase the chance of fake news being recommended and spread. Therefore, we have witnessed more and more research attention to graph adversarial attacks and their countermeasures. In this chapter, we first introduce concepts and definitions of graph adversarial attacks and detail some representative adversarial attack methods on graphs. Then, we discuss representative defense techniques against these adversarial attacks.","PeriodicalId":254746,"journal":{"name":"Deep Learning on Graphs","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114967646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信