Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval最新文献

筛选
英文 中文
Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text Classification 利用对抗性训练进行跨语言文本分类
Xin Dong, Yaxin Zhu, Yupeng Zhang, Zuohui Fu, Dongkuan Xu, Sen Yang, Gerard de Melo
{"title":"Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text Classification","authors":"Xin Dong, Yaxin Zhu, Yupeng Zhang, Zuohui Fu, Dongkuan Xu, Sen Yang, Gerard de Melo","doi":"10.1145/3397271.3401209","DOIUrl":"https://doi.org/10.1145/3397271.3401209","url":null,"abstract":"In cross-lingual text classification, one seeks to exploit labeled data from one language to train a text classification model that can then be applied to a completely different language. Recent multilingual representation models have made it much easier to achieve this. Still, there may still be subtle differences between languages that are neglected when doing so. To address this, we present a semi- supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations. The resulting model then serves as a teacher to induce labels for unlabeled target lan- guage samples that can be used during further adversarial training, allowing us to gradually adapt our model to the target language. Compared with a number of strong baselines, we observe signifi- cant gains in effectiveness on document and intent classification for a diverse set of languages.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133300204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Time Matters: Sequential Recommendation with Complex Temporal Information 时间问题:具有复杂时间信息的顺序推荐
Wenwen Ye, Shuaiqiang Wang, Xu Chen, Xuepeng Wang, Zheng Qin, Dawei Yin
{"title":"Time Matters: Sequential Recommendation with Complex Temporal Information","authors":"Wenwen Ye, Shuaiqiang Wang, Xu Chen, Xuepeng Wang, Zheng Qin, Dawei Yin","doi":"10.1145/3397271.3401154","DOIUrl":"https://doi.org/10.1145/3397271.3401154","url":null,"abstract":"Incorporating temporal information into recommender systems has recently attracted increasing attention from both the industrial and academic research communities. Existing methods mostly reduce the temporal information of behaviors to behavior sequences for subsequently RNN-based modeling. In such a simple manner, crucial time-related signals have been largely neglected. This paper aims to systematically investigate the effects of the temporal information in sequential recommendations. In particular, we firstly discover two elementary temporal patterns of user behaviors: \"absolute time patterns'' and \"relative time patterns'', where the former highlights user time-sensitive behaviors, e.g., people may frequently interact with specific products at certain time point, and the latter indicates how time interval influences the relationship between two actions. For seamlessly incorporating these information into a unified model, we devise a neural architecture that jointly learns those temporal patterns to model user dynamic preferences. Extensive experiments on real-world datasets demonstrate the superiority of our model, comparing with the state-of-the-arts.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"233 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132925081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 63
Reinforcement Learning to Rank with Pairwise Policy Gradient 基于两两策略梯度的强化学习排序
Jun Xu, Zeng Wei, Long Xia, Yanyan Lan, Dawei Yin, Xueqi Cheng, Ji-rong Wen
{"title":"Reinforcement Learning to Rank with Pairwise Policy Gradient","authors":"Jun Xu, Zeng Wei, Long Xia, Yanyan Lan, Dawei Yin, Xueqi Cheng, Ji-rong Wen","doi":"10.1145/3397271.3401148","DOIUrl":"https://doi.org/10.1145/3397271.3401148","url":null,"abstract":"This paper concerns reinforcement learning~(RL) of the document ranking models for information retrieval~(IR). One branch of the RL approaches to ranking formalize the process of ranking with Markov decision process~(MDP) and determine the model parameters with policy gradient. Though preliminary success has been shown, these approaches are still far from achieving their full potentials. Existing policy gradient methods directly utilize the absolute performance scores (returns) of the sampled document lists in its gradient estimations, which may cause two limitations: 1) fail to reflect the relative goodness of documents within the same query, which usually is close to the nature of IR ranking; 2) generate high variance gradient estimations, resulting in slow learning speed and low ranking accuracy. To deal with the issues, we propose a novel policy gradient algorithm in which the gradients are determined using pairwise comparisons of two document lists sampled within the same query. The algorithm, referred to as Pairwise Policy Gradient (PPG), repeatedly samples pairs of document lists, estimates the gradients with pairwise comparisons, and finally updates the model parameters. Theoretical analysis shows that PPG makes an unbiased and low variance gradient estimations. Experimental results have demonstrated performance gains over the state-of-the-art baselines in search result diversification and text retrieval.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"107 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117284235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Global Context Enhanced Graph Neural Networks for Session-based Recommendation 基于会话推荐的全局上下文增强图神经网络
Ziyang Wang, Wei Wei, G. Cong, Xiaoli Li, Xian-Ling Mao, Minghui Qiu
{"title":"Global Context Enhanced Graph Neural Networks for Session-based Recommendation","authors":"Ziyang Wang, Wei Wei, G. Cong, Xiaoli Li, Xian-Ling Mao, Minghui Qiu","doi":"10.1145/3397271.3401142","DOIUrl":"https://doi.org/10.1145/3397271.3401142","url":null,"abstract":"Session-based recommendation (SBR) is a challenging task, which aims at recommending items based on anonymous behavior sequences. Almost all the existing solutions for SBR model user preference only based on the current session without exploiting the other sessions, which may contain both relevant and irrelevant item-transitions to the current session. This paper proposes a novel approach, called Global Context Enhanced Graph Neural Networks (GCE-GNN) to exploit item transitions over all sessions in a more subtle manner for better inferring the user preference of the current session. Specifically, GCE-GNN learns two levels of item embeddings from session graph and global graph, respectively: (i) Session graph, which is to learn the session-level item embedding by modeling pairwise item-transitions within the current session; and (ii) Global graph, which is to learn the global-level item embedding by modeling pairwise item-transitions over all sessions. In GCE-GNN, we propose a novel global-level item representation learning layer, which employs a session-aware attention mechanism to recursively incorporate the neighbors' embeddings of each node on the global graph. We also design a session-level item representation learning layer, which employs a GNN on the session graph to learn session-level item embeddings within the current session. Moreover, GCE-GNN aggregates the learnt item representations in the two levels with a soft attention mechanism. Experiments on three benchmark datasets demonstrate that GCE-GNN outperforms the state-of-the-art methods consistently.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114232151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 293
Joint-modal Distribution-based Similarity Hashing for Large-scale Unsupervised Deep Cross-modal Retrieval 基于联合模态分布的大规模无监督深度跨模态检索相似性哈希
Song Liu, Shengsheng Qian, Yang Guan, Jiawei Zhan, Long Ying
{"title":"Joint-modal Distribution-based Similarity Hashing for Large-scale Unsupervised Deep Cross-modal Retrieval","authors":"Song Liu, Shengsheng Qian, Yang Guan, Jiawei Zhan, Long Ying","doi":"10.1145/3397271.3401086","DOIUrl":"https://doi.org/10.1145/3397271.3401086","url":null,"abstract":"Hashing-based cross-modal search which aims to map multiple modality features into binary codes has attracted increasingly attention due to its storage and search efficiency especially in large-scale database retrieval. Recent unsupervised deep cross-modal hashing methods have shown promising results. However, existing approaches typically suffer from two limitations: (1) They usually learn cross-modal similarity information separately or in a redundant fusion manner, which may fail to capture semantic correlations among instances from different modalities sufficiently and effectively. (2) They seldom consider the sampling and weighting schemes for unsupervised cross-modal hashing, resulting in the lack of satisfactory discriminative ability in hash codes. To overcome these limitations, we propose a novel unsupervised deep cross-modal hashing method called Joint-modal Distribution-based Similarity Hashing (JDSH) for large-scale cross-modal retrieval. Firstly, we propose a novel cross-modal joint-training method by constructing a joint-modal similarity matrix to fully preserve the cross-modal semantic correlations among instances. Secondly, we propose a sampling and weighting scheme termed the Distribution-based Similarity Decision and Weighting (DSDW) method for unsupervised cross-modal hashing, which is able to generate more discriminative hash codes by pushing semantic similar instance pairs closer and pulling semantic dissimilar instance pairs apart. The experimental results demonstrate the superiority of JDSH compared with several unsupervised cross-modal hashing methods on two public datasets NUS-WIDE and MIRFlickr.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121951011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 70
MaHRL
Dongyang Zhao, Liang Zhang, Bo Zhang, Lizhou Zheng, Yongjun Bao, Weipeng P. Yan
{"title":"MaHRL","authors":"Dongyang Zhao, Liang Zhang, Bo Zhang, Lizhou Zheng, Yongjun Bao, Weipeng P. Yan","doi":"10.1145/3397271.3401170","DOIUrl":"https://doi.org/10.1145/3397271.3401170","url":null,"abstract":"As huge commercial value of the recommender system, there has been growing interest to improve its performance in recent years. The majority of existing methods have achieved great improvement on the metric of click, but perform poorly on the metric of conversion possibly due to its extremely sparse feedback signal. To track this challenge, we design a novel deep hierarchical reinforcement learning based recommendation framework to model consumers' hierarchical purchase interest. Specifically, the high-level agent catches long-term sparse conversion interest, and automatically sets abstract goals for low-level agent, while the low-level agent follows the abstract goals and catches short-term click interest via interacting with real-time environment. To solve the inherent problem in hierarchical reinforcement learning, we propose a novel multi-goals abstraction based deep hierarchical reinforcement learning algorithm (MaHRL). Our proposed algorithm contains three contributions: 1) the high-level agent generates multiple goals to guide the low-level agent in different sub-periods, which reduces the difficulty of approaching high-level goals; 2) different goals share the same state encoder structure and its parameters, which increases the update frequency of the high-level agent and thus accelerates the convergence of our proposed algorithm; 3) an appreciated reward assignment mechanism is designed to allocate rewards in each goal so as to coordinate different goals in a consistent direction. We evaluate our proposed algorithm based on a real-world e-commerce dataset and validate its effectiveness.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115094095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Relevance Models for Multi-Contextual Appropriateness in Point-of-Interest Recommendation 兴趣点推荐中多上下文适当性的关联模型
Anirban Chakraborty, Debasis Ganguly, Owen Conlan
{"title":"Relevance Models for Multi-Contextual Appropriateness in Point-of-Interest Recommendation","authors":"Anirban Chakraborty, Debasis Ganguly, Owen Conlan","doi":"10.1145/3397271.3401197","DOIUrl":"https://doi.org/10.1145/3397271.3401197","url":null,"abstract":"Trip-qualifiers, such as 'trip-type' (vacation, work etc.), 'accompanied-by' (e.g., solo, friends, family etc.) are potentially useful sources of information that could be used to improve the effectiveness of POI recommendation in a current context (with a given set of these constraints). Using such information is not straight forward because a user's text reviews about the POIs visited in the past do not explicitly contain such annotations (e.g., a positive review about a pub visit does not contain the information on whether the user was with friends or alone, on a business trip or vacation). We propose to use a small set of manually compiled knowledge resource to predict the associations between the review texts in a user profile and the likely trip contexts. We demonstrate that incorporating this information within an IR-based relevance modeling framework significantly improves POI recommendation.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115509300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
ServiceGroup: A Human-Machine Cooperation Solution for Group Chat Customer Service ServiceGroup:群聊客服人机协作解决方案
Minghui Yang, Hengbin Cui, Shaosheng Cao, Yafang Wang, Xiaolong Li
{"title":"ServiceGroup: A Human-Machine Cooperation Solution for Group Chat Customer Service","authors":"Minghui Yang, Hengbin Cui, Shaosheng Cao, Yafang Wang, Xiaolong Li","doi":"10.1145/3397271.3401414","DOIUrl":"https://doi.org/10.1145/3397271.3401414","url":null,"abstract":"With the rapid growth of B2B (Business-to-Business), how to efficiently respond to various customer questions is becoming an important issue. In this scenario, customer questions always involve many aspects of the products, so there are usually multiple customer service agents to response respectively. To improve efficiency, we propose a human-machine cooperation solution called ServiceGroup, where relevant agents and customers are invited into the same group, and the system can provide a series of intelligent functions, including question notification, question recommendation and knowledge extraction. With the assistance of our developed ServiceGroup, the response rate within 15 minutes is improved twice. Until now, our ServiceGroup has already supported thousands of enterprises by means of millions of groups in instant messaging softwares.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123596935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Study of Methods for the Generation of Domain-Aware Word Embeddings 领域感知词嵌入的生成方法研究
Dominic Seyler, Chengxiang Zhai
{"title":"A Study of Methods for the Generation of Domain-Aware Word Embeddings","authors":"Dominic Seyler, Chengxiang Zhai","doi":"10.1145/3397271.3401287","DOIUrl":"https://doi.org/10.1145/3397271.3401287","url":null,"abstract":"Word embeddings are essential components for many text data applications. In most work, \"out-of-the-box\" embeddings trained on general text corpora are used, but they can be less effective when applied to domain-specific settings. Thus, how to create \"domain-aware\" word embeddings is an interesting open research question. In this paper, we study three methods for creating domain-aware word embeddings based on both general and domain-specific text corpora, including concatenation of embedding vectors, weighted fusion of text data, and interpolation of aligned embedding vectors. Even though the investigated strategies are tailored for domain-specific tasks, they are general enough to be applied to any domain and are not specific to a single task. Experimental results show that all three methods can work well, however, the interpolation method consistently works best.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128862062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Metadata Matters in User Engagement Prediction 元数据在用户粘性预测中很重要
Xiang Chen, Saayan Mitra, Viswanathan Swaminathan
{"title":"Metadata Matters in User Engagement Prediction","authors":"Xiang Chen, Saayan Mitra, Viswanathan Swaminathan","doi":"10.1145/3397271.3401201","DOIUrl":"https://doi.org/10.1145/3397271.3401201","url":null,"abstract":"Predicting user engagement (e.g., click-through rate, conversion rate) on the display ads plays a critical role in delivering the right ad to the right user in online advertising. Existing techniques spanning Logistic Regression to Factorization Machines and their derivatives, focus on modeling the interactions among handcrafted features to predict the user engagement. Little attention has been paid on how the ad fits with the context (e.g., hosted webpage, user demographics). In this paper, we propose to include the metadata feature, which captures the visual appearance of the ad, in the user engagement prediction task. In particular, given a data sample, we combine both the basic context features, which have been widely used in existing prediction models, and the metadata feature, which is extracted from the ad using a state-of-the-art deep learning framework, to predict user engagement. To demonstrate the effectiveness of the proposed metadata feature, we compare the performance of the widely used prediction models before and after integrating the metadata feature. Our experimental results on a real-world dataset demonstrate that the metadata feature is able to further improve the prediction performance.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129360093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信