Fuzzy Neural Intelligent Systems最新文献

筛选
英文 中文
Application of Neuro-Fuzzy Systems: Development of a Fuzzy Learning Decision Tree and Application to Tactile Recognition 神经模糊系统的应用:模糊学习决策树的发展及其在触觉识别中的应用
Fuzzy Neural Intelligent Systems Pub Date : 2000-09-21 DOI: 10.1201/9781420057997.CH17
Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"Application of Neuro-Fuzzy Systems: Development of a Fuzzy Learning Decision Tree and Application to Tactile Recognition","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH17","DOIUrl":"https://doi.org/10.1201/9781420057997.CH17","url":null,"abstract":"","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129245923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuzzy Assessment Systems of Rehabilitative Process for CVA Patients CVA患者康复过程的模糊评价系统
Fuzzy Neural Intelligent Systems Pub Date : 2000-09-21 DOI: 10.1201/9781420057997.CH18
Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"Fuzzy Assessment Systems of Rehabilitative Process for CVA Patients","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH18","DOIUrl":"https://doi.org/10.1201/9781420057997.CH18","url":null,"abstract":"In recent years, cerebrovascular accidents have become a very serious disease in our society. How to assess the states of cerebrovascular accident (CVA) patients and rehabilitate them is very important. Therapists train CVA patients according to the functional activities they need in their daily lives. During the rehabilitative therapeutic activities, the assessment of motor control ability for CVA patients is very important. In this chapter, a fuzzy diagnostic system is developed to evaluate the motor control ability of CVA patients. The CVA patients will be analyzed according to the motor control abilities defined by kinetic signals. The kinetic signals are fed into the proposed fuzzy diagnostic system to assess the global control ability and compare with the FIM (Functional Independent Measurement) score, which is a clinical index for assessing the states of CVA patients in hospitals. It is shown that the proposed fuzzy diagnostic system can precisely assess the motor control ability of CVA patients.","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121130070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DSP-based Neural Controller for a Multi-degree Prosthetic Hand 基于dsp的多度假手神经控制器
Fuzzy Neural Intelligent Systems Pub Date : 2000-09-21 DOI: 10.1201/9781420057997.CH19
Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"A DSP-based Neural Controller for a Multi-degree Prosthetic Hand","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH19","DOIUrl":"https://doi.org/10.1201/9781420057997.CH19","url":null,"abstract":"","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131122611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical Essence and Structures of Feedforward Artificial Neural Networks 前馈人工神经网络的数学本质与结构
Fuzzy Neural Intelligent Systems Pub Date : 2000-09-21 DOI: 10.1201/9781420057997.ch3
Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"Mathematical Essence and Structures of Feedforward Artificial Neural Networks","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.ch3","DOIUrl":"https://doi.org/10.1201/9781420057997.ch3","url":null,"abstract":"In this chapter, we first introduce the mathematical model and structure of artificial neurons. After that, we consider several artificial neural networks that assemble the neurons. This chapter does not intend to explain details of biological neurons. Instead, we only focus on artificial neurons that simply extract the abstract operation of biological neurons and their mathematical models. We start with an introduction in Section 1, followed by the discussion of neuron models in Section","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122973190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foundation of Neuro-Fuzzy Systems and an Engineering Application 神经模糊系统基础及其工程应用
Fuzzy Neural Intelligent Systems Pub Date : 2000-09-21 DOI: 10.1201/9781420057997.CH14
Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"Foundation of Neuro-Fuzzy Systems and an Engineering Application","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH14","DOIUrl":"https://doi.org/10.1201/9781420057997.CH14","url":null,"abstract":"This chapter discusses the foundation of neuro-fuzzy systems. First, we introduce Takagi, Sugeno, and Kang (TSK) fuzzy model [l,2] and its difference from the Mamdani model. Under the idea of TSK fuzzy model, we discuss a neuro-fuzzy system architecture: Adaptive Network-based Fuzzy Inference System (ANFIS) that is developed by Jang [3]. This model allows the fuzzy systems to learn the parameters adaptively. By using a hybrid learning algorithm, the ANFIS can construct an input-output mapping based on both human knowledge and numerical data. Finally, the ANFIS architecture is employed for an engineering example an IC fabrication time estimation. The result is compared with other different algorithms: Gauss-Newton-based Levenberg-Marquardt algorithm (GN algorithm), and backpropagation of neural network (BPNN) algorithm. Comparing these two methods, the ANFIS algorithm gives the most accurate prediction result at the expense of the highest computation cost. Besides, the adaptation of fuzzy inference system provides more physical insights for engineers to understand the relationship between the parameters.","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116711470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Flat Neural Networks and Rapid Learning Algorithms 平面神经网络和快速学习算法
Fuzzy Neural Intelligent Systems Pub Date : 2000-09-21 DOI: 10.1201/9781420057997.CH5
Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"Flat Neural Networks and Rapid Learning Algorithms","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH5","DOIUrl":"https://doi.org/10.1201/9781420057997.CH5","url":null,"abstract":"In this chapter, we will introduce flat neural networks architecture. The system equations of flat neural networks can be formulated as a linear system. In this way, the performance index is a quadratic form of the weights, and the weights of the networks can be solved easily using a linear least-square method. Even though they have a linear-system-equations-like equation, the flat neural networks are also perfect for approximating non-linear functions. A fast learning algorithm is given to find an optimal weight of the flat neural networks. This formulation makes it easier to update the weights instantly for both a newly added input and a newly added node. A dynamic stepwise updating algorithm is given to update thc weights of the system instantly. Finally, we give several examples of applications of the flat neural networks, such as an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a non-linear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the flat neural networks are very attractive to real-time processes. 5.1 Introduction Feedforward artificial neural networks have been a popular research subject recently. The research topics vary from the theoretical view of learning algorithms such as learning and generalization properties of the networks to a variety of applications in control, classification, biomedical, manufacturing, and business forecasting, etc. The backpropagation (BP) supervised learning algorithm is one of the most popular learning algorithms being developed for layered networks [l-21. Improving the learning speed of BP and increasing the generalization capability ofthe networks have played a center role in neural network research [3-91. Apart from multi-layer network architectures and the BP algorithm, various simplified architectures or different non-linear activation functions have been devised. Among those, so-called flat networks including functional-link neural networks and radial basis function networks have been proposed [lo-151. These flat networks remove the drawback","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115954390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical Essence and Structures of Feedback Neural Networks and Weight Matrix Design 反馈神经网络的数学本质与结构与权矩阵设计
Fuzzy Neural Intelligent Systems Pub Date : 2000-09-21 DOI: 10.1201/9781420057997.CH7
Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"Mathematical Essence and Structures of Feedback Neural Networks and Weight Matrix Design","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH7","DOIUrl":"https://doi.org/10.1201/9781420057997.CH7","url":null,"abstract":"This chapter focuses on mathematical essence and structures of neural networks and fuzzy neural networks, especially on discrete feedback neural networks. We begin with review of Hopfield networks and discuss the mathematical essence and the structures of discrete feedback neural networks. First, we discuss a general criterion on the stability of networks, and we show that the energy function commonly used can be regarded as a special case of the criterion. Second, we show that the stable points of a network can be converted as the fixed points of some function, and the weight matrix of the feedback neural networks can be solved from a group of systems of linear equations. Last, we point out the mathematical base of the outer-product learning method and give several examples of designing weight matrices based on multifactorial functions. In previous chapters, we have discussed in detail the mathematical essence and structures of feedforward neural networks. Here, we study the mathematical essence and structures of feedback neural networks, namely, the Hopfield networks [l]. illustrates a single-layer Hopfield net with n neurons, where are outer input variables, which usually are treated as \" the first impetus \" , then they are removed and the network will continue to evolve itself. connection weights, wij = wji and wii=O. The activation functions of the neurons are denoted by cpi, where the threshold values are 8i.","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123295605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Basic Structure of Fuzzy Neural Networks 模糊神经网络的基本结构
Fuzzy Neural Intelligent Systems Pub Date : 2000-09-21 DOI: 10.1201/9781420057997.CH6
Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"Basic Structure of Fuzzy Neural Networks","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH6","DOIUrl":"https://doi.org/10.1201/9781420057997.CH6","url":null,"abstract":"In this chapter we shall discuss the structure of fuzzy neural networks. We start with general definitions of multifactorial functions. And we show that a fuzzy neu-ron can be formulated by means of standard multifactorial function. We also give definitions of a fuzzy neural network based on fuzzy relationship and fuzzy neurons. Finally, we describe a learning algorithm for a fuzzy neural network based on V and A operations. 6.1 Definition of Fuzzy Neurons Neural networks alone have demonstrated their ability to classify, recall, and associate information [l]. In this chapter, we shall incorporate fuzziness to the networks. The objective to include the fuzziness is to extend the capability of the neural networks to handle \" vague \" information than \" crisp \" information only. Previous work has shown that fuzzy neural networks have achieved some level of success both fundamentally and practically [l-lo]. As indicated in reference [l], there are several ways to classify fuzzy neural networks: (1) a fuzzy neuron with crisp signals used to evaluate fuzzy weights, (2) a fuzzy neuron with fuzzy signals which is combined with fuzzy weights, and (3) a fuzzy neuron described by fuzzy logic equations. In this chapter, we shall discuss a fuzzy neural network where both inputs and outputs can be either a crisp value or a fuzzy set. To do this we shall first introduce multifactorial function [ll, 121. We have pointed out from Chapter 4 that one of the basic functions of neurons is that the input to a neuron is synthesized first, then activated, where the basic operators to be used as synthesizing are \" + \" and \". \" denoted by (+, .) and called synthetic operators. However, there are divers styles operators will be multifactorial functions, so we now briefly introduce the concept of multifactorial functions. In [0, lIm, a natural partial ordering \" 5 \" is defined as follows: A multifactorial function is actually a projective mapping from an rn-ary space to a","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127374910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信