Volodymyr Svitlyk, Stephan Weiss, Gaston Garbarino, René Hübner, Andreas Worbs, Nina Huittinen, Christoph Hennig
{"title":"Phase composition and stability of Gd2−x Th x Zr2O7 under extreme conditions","authors":"Volodymyr Svitlyk, Stephan Weiss, Gaston Garbarino, René Hübner, Andreas Worbs, Nina Huittinen, Christoph Hennig","doi":"10.1515/zkri-2024-0066","DOIUrl":"https://doi.org/10.1515/zkri-2024-0066","url":null,"abstract":"Introduction of Th into synthetic disordered fluorite-type Gd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> induces a transition to an ordered pyrochlore-type phase at a Th concentration of 10 % at the Gd site (Gd<jats:sub>1.8</jats:sub>Th<jats:sub>0.2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> composition). The degree of order of the fluorite-type phase reaches 50 % for a Th concentration of 25 % (Gd<jats:sub>1.5</jats:sub>Th<jats:sub>0.5</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> composition). Upon application of high pressure, the Gd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> phase retains the fluorite-type structure until 33 GPa (<jats:italic>K</jats:italic> <jats:sub>0</jats:sub> = 167(1) GPa), where it undergoes reversible amorphization. The Gd<jats:sub>1.7</jats:sub>Th<jats:sub>0.3</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> phase was found to be stable up to at least a pressure of 25 GPa (<jats:italic>K</jats:italic> <jats:sub>0</jats:sub> = 169(3) GPa). Upon heating to <jats:italic>T</jats:italic> <jats:sub>max</jats:sub> of 1135 K, the Gd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> phase retains its disordered fluorite-type structural arrangement (<jats:italic>α</jats:italic> = 3.03 × 10<jats:sup>−5</jats:sup> K<jats:sup>−1</jats:sup>). The excellent stability of the Gd<jats:sub>2−<jats:italic>x</jats:italic> </jats:sub>Th<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> phases under extreme conditions of temperature and pressure makes Gd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> a promising candidate as a host matrix for radioactive elements for safe long-term underground storage of nuclear waste.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Cd7(SeO3)8]{Cu2Br2}, a host-guest structure derived from β-CdSeO3","authors":"Oleg I. Siidra, Vasili Yu Grishaev","doi":"10.1515/zkri-2024-0072","DOIUrl":"https://doi.org/10.1515/zkri-2024-0072","url":null,"abstract":"A first cadmium copper selenite–bromide Cd<jats:sub>7</jats:sub>Cu<jats:sub>2</jats:sub>(SeO<jats:sub>3</jats:sub>)<jats:sub>8</jats:sub>Br<jats:sub>2</jats:sub> (1) was obtained via chemical vapor transport reactions. The new compound is triclinic, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mi>P</m:mi> <m:mover accent=\"true\"> <m:mn>1</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$Poverline{1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_zkri-2024-0072_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula>, <jats:italic>a</jats:italic> = 5.3280(5) Å, <jats:italic>b</jats:italic> = 10.6190(12) Å, <jats:italic>c</jats:italic> = 11.4380(13) Å, <jats:italic>α</jats:italic> = 100.856(4)°, <jats:italic>β</jats:italic> = 93.321(4)°, <jats:italic>γ</jats:italic> = 91.021(4)°, <jats:italic>V</jats:italic> = 634.22(12) Å<jats:sup>3</jats:sup>, <jats:italic>R</jats:italic> <jats:sub>1</jats:sub> = 0.027. 1 has no structural analogs and belongs to a new structure type. The structure of 1 can be described as a host-guest architecture. The host is the [Cd<jats:sub>7</jats:sub>(SeO<jats:sub>3</jats:sub>)<jats:sub>8</jats:sub>]<jats:sup>2−</jats:sup> interrupted framework, which consists of zigzag layers with a large aperture. The guests are copper bromide species. Thus, the formula can be written as [Cd<jats:sub>7</jats:sub>(SeO<jats:sub>3</jats:sub>)<jats:sub>8</jats:sub>]{Cu<jats:sub>2</jats:sub>Br<jats:sub>2</jats:sub>}.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Dronskowski, Thomas Brückel, Holger Kohlmann, Maxim Avdeev, Andreas Houben, Martin Meven, Michael Hofmann, Takashi Kamiyama, Mirijam Zobel, Werner Schweika, Raphaël P. Hermann, Asami Sano-Furukawa
{"title":"Neutron diffraction: a primer","authors":"Richard Dronskowski, Thomas Brückel, Holger Kohlmann, Maxim Avdeev, Andreas Houben, Martin Meven, Michael Hofmann, Takashi Kamiyama, Mirijam Zobel, Werner Schweika, Raphaël P. Hermann, Asami Sano-Furukawa","doi":"10.1515/zkri-2024-0001","DOIUrl":"https://doi.org/10.1515/zkri-2024-0001","url":null,"abstract":"Because of the neutron’s special properties, neutron diffraction may be considered one of the most powerful techniques for structure determination of crystalline and related matter. Neutrons can be released from nuclear fission, from spallation processes, and also from low-energy nuclear reactions, and they can then be used in powder, time-of-flight, texture, single crystal, and other techniques, all of which are perfectly suited to clarify crystal and magnetic structures. With high neutron flux and sufficient brilliance, neutron diffraction also excels for diffuse scattering, for <jats:italic>in situ</jats:italic> and <jats:italic>operando</jats:italic> studies as well as for high-pressure experiments of today’s materials. For these, the wave-like neutron’s infinite advantage (isotope specific, magnetic) is crucial to answering important scientific questions, for example, on the structure and dynamics of light atoms in energy conversion and storage materials, magnetic matter, or protein structures. In this primer, we summarize the current state of neutron diffraction (and how it came to be), but also look at recent advances and new ideas, e.g., the design of new instruments, and what follows from that.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evgeny V. Nazarchuk, Oleg I. Siidra, Dmitri O. Charkin, Yana G. Tagirova
{"title":"A new uranyl silicate sheet derived from phosphuranylite topology in the structure of Cs4[(UO2)5(SiO3OH)2O2F4]","authors":"Evgeny V. Nazarchuk, Oleg I. Siidra, Dmitri O. Charkin, Yana G. Tagirova","doi":"10.1515/zkri-2023-0038","DOIUrl":"https://doi.org/10.1515/zkri-2023-0038","url":null,"abstract":"A new uranyl silicate Cs<jats:sub>4</jats:sub>[(UO<jats:sub>2</jats:sub>)<jats:sub>5</jats:sub>(SiO<jats:sub>3</jats:sub>OH)<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>F<jats:sub>4</jats:sub>] (1), was obtained via a hydrothermal route. The new compound is monoclinic, <jats:italic>P</jats:italic>2<jats:sub>1</jats:sub>/<jats:italic>n</jats:italic>, <jats:italic>a</jats:italic> = 8.3870(2), <jats:italic>b</jats:italic> = 13.4612(2), <jats:italic>c</jats:italic> = 10.9503(2) Å, <jats:italic>β</jats:italic> = 91.223(2)°, <jats:italic>V</jats:italic> = 1236.00(4) Å<jats:sup>3</jats:sup>; the structure has been solved and refined down to <jats:italic>R</jats:italic> <jats:sub>1</jats:sub> = 0.022. Therein, the phosphouranylite units (<jats:italic>PU</jats:italic>s) associate into a new type of uranyl-silicate layers, [(UO<jats:sub>2</jats:sub>)<jats:sub>5</jats:sub>(SiO<jats:sub>3</jats:sub>OH)<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>F<jats:sub>4</jats:sub>]<jats:sup>4−</jats:sup>, which interleave with the Cs<jats:sup>+</jats:sup> cations. Topological analysis of <jats:italic>PU</jats:italic> based structures indicates that these layers in 1 provide a unique example of complexes constructed only via association of the <jats:italic>PU</jats:italic> and not involving other building units.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"468 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekaterina Kaneva, Olga Belozerova, Tatiana Radomskaya, Roman Shendrik
{"title":"Crystal chemistry, Raman and FTIR spectroscopy, optical absorption, and luminescence study of Fe-dominant sogdianite","authors":"Ekaterina Kaneva, Olga Belozerova, Tatiana Radomskaya, Roman Shendrik","doi":"10.1515/zkri-2023-0055","DOIUrl":"https://doi.org/10.1515/zkri-2023-0055","url":null,"abstract":"Fe-dominant sogdianite, a cyclosilicate compound with the chemical formula (Fe<jats:sup>3+</jats:sup> <jats:sub>0.74</jats:sub>Zr<jats:sub>0.64</jats:sub>Ti<jats:sub>0.46</jats:sub> Al<jats:sub>0.15</jats:sub>)(□<jats:sub>1.02</jats:sub>Na<jats:sub>0.98</jats:sub>)K[Li<jats:sub>3</jats:sub>Si<jats:sub>12</jats:sub>O<jats:sub>30</jats:sub>], was studied. The investigation involved a comprehensive analysis of the mineral sample, including crystal-chemical analysis, Raman and FTIR spectroscopy, optical absorption, and luminescence study. Crystallographic site populations were determined through single crystal structure refinement and electron probe microanalysis. The thermoelastic behavior of a powder was studied using <jats:italic>in situ</jats:italic> high-temperature X-ray diffraction (30–750 °C). Notably, no phase transition was detected; sogdianite exhibited anisotropic thermal expansion. The first time study of vibrational spectra and spectral bands assigning were performed. The electronic transitions in <jats:italic>d</jats:italic> <jats:sup>5</jats:sup>-ion impurities of sogdianite were studied using optical absorption and luminescence spectroscopy. The origin of pink color and luminescence of sogdianite was clarified. The broad spectral bands in the visible UV spectral region are responsible for the pink color exhibited by sogdianite and could be attributed to <jats:italic>d</jats:italic>–<jats:italic>d</jats:italic> transitions occurring in Fe<jats:sup>3+</jats:sup> ions.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"245 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase structure of the ceramic samples of the BiScO3–PbTiO3–PbMg⅓Nb⅔O3 system near the morphotropic phase boundary studied by the Rietveld method","authors":"Vladimir Sirotinkin, Alexandr Bush, Maksim Sysoev","doi":"10.1515/zkri-2024-0065","DOIUrl":"https://doi.org/10.1515/zkri-2024-0065","url":null,"abstract":"An X-ray diffraction study of ceramic samples of the BiScO<jats:sub>3</jats:sub>–PbTiO<jats:sub>3</jats:sub>–PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> system with compositions close to the morphotropic phase boundary was carried out at room temperature. The existence of wide areas of solid solutions has been established. The symmetry of the PbTiO<jats:sub>3</jats:sub>-based solid solutions is tetragonal (space group <jats:italic>P</jats:italic>4<jats:italic>mm</jats:italic>). The symmetry of the PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub>-based solid solutions is cubic (space group <jats:italic>Pm</jats:italic> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_zkri-2024-0065_ineq_201.png\" /> </jats:alternatives> </jats:inline-formula> <jats:italic>m</jats:italic>). Near the BiScO<jats:sub>3</jats:sub> side, the solid solutions are rhombohedral (space group <jats:italic>R</jats:italic>3<jats:italic>m</jats:italic>). During the morphotropic phase transition from the cubic solid solutions to the tetragonal ones, additional phases appear. If a tetragonal phase prevails ((1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.46; (1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–1.1<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–0.9<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.45 and 0.42), a satisfactory model is a model with a minority cubic phase (space group <jats:italic>Pm</jats:italic> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_zkri-2024-0065_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> <jats:italic>m</jats:italic>). If a cubic phase prevails ((1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–1.1<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–0.9<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.39 and 0.36; (1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–0.8<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–1.2<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jat","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daria A. Banaru, Sergey M. Aksenov, Alexander M. Banaru, Artem R. Oganov
{"title":"Mutual correlations of complexity indices of the crystal structure for the series of mercury-containing minerals","authors":"Daria A. Banaru, Sergey M. Aksenov, Alexander M. Banaru, Artem R. Oganov","doi":"10.1515/zkri-2024-0062","DOIUrl":"https://doi.org/10.1515/zkri-2024-0062","url":null,"abstract":"The correlations of values of the crystal structure complexity indices were calculated using the major modern approaches (10 indices in total), in particular, those, proposed by Krivovichev, Oganov, the concept of implicit hierarchical depth, as well as, for the comparison, the measure of regularity of (<jats:italic>r</jats:italic>, <jats:italic>R</jats:italic>)-system introduced by Blatov. To find the correlations, a series of 33 mercury-containing mineral structures with a non-repeating system of crystallographic positions occupied by atoms without any partial occupancy was used. It was shown that almost all pairs of complexity indices are statistically significantly (<jats:italic>p</jats:italic> < 0.05) positively or negatively correlated. The discriminating power of the indices for the set of structures was calculated. It is discussed that all the indices can be used to assess the complexity for any series of the crystal structures, but each of them has its particular advantages and limitations.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A survey of supramolecular association involving the oxide-O atom in the crystals of triorganoamine N-oxide derivatives, RR′R″N(+)O(−)","authors":"Edward R. T. Tiekink","doi":"10.1515/zkri-2024-0061","DOIUrl":"https://doi.org/10.1515/zkri-2024-0061","url":null,"abstract":"Trimethylamine N-oxide, Me<jats:sub>3</jats:sub>N<jats:sup>(+)</jats:sup>O<jats:sup>(−)</jats:sup>, is an important molecule in biology and medicine. Herein, a survey of the interactions involving the oxide-O atom in crystals containing derivatives of Me<jats:sub>3</jats:sub>N<jats:sup>(+)</jats:sup>O<jats:sup>(−)</jats:sup>, namely RR′R″N<jats:sup>(+)</jats:sup>O<jats:sup>(−)</jats:sup>, is presented; R,R′, R″ = alkyl and/or aryl. A total of 119 RR′R″N<jats:sup>(+)</jats:sup>O<jats:sup>(−)</jats:sup> molecules were analysed for the supramolecular interactions involving the oxide-O atom. Hydrates form the largest class of crystals, comprising over 40 % of the 91 crystals investigated, a value slightly higher than expectation. Over 80 % of molecules had at least one O–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bond: 3, 45 and 33 % of all molecules had three, two or one O–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bonds, respectively. Further, nearly 15 % of molecules formed at least one N–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bond, sometimes operating in concert with O–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bonds. The overwhelming majority of molecules featured inter- and/or intra-molecular supporting C–H⋯O<jats:sup>(−)</jats:sup>(oxide) contacts so that a diverse range of supramolecular interaction patterns is apparent, a situation made more complicated by the appearance of different supramolecular association patterns often observed for independent molecules in crystals with more than one molecule in the crystallographic asymmetric-unit. Of the 6 % of molecules devoid of conventional A–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bonds, all formed three or four inter-/intra-molecular C–H⋯O<jats:sup>(−)</jats:sup>(oxide) contacts usually characterised by at least one short H⋯O<jats:sup>(−)</jats:sup>(oxide) distance.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, structural characterization of supramolecular cocrystals of bis(3-hydroxy-1-methylpyridin-1-ium iodide)-18-crown-6","authors":"Mageswaran Vijayasri, Natarajan Archana, Chellakarungu Balakrishnan, Mahalingapandian Dhanalakshmi, Shanmugasundaram Parthiban","doi":"10.1515/zkri-2024-0060","DOIUrl":"https://doi.org/10.1515/zkri-2024-0060","url":null,"abstract":"A new supramolecular cocrystal of bis(3-hydroxy-1-methylpyridin-1-ium iodide)-18-crown-6 (I) has been synthesized successfully from 3-hydroxypyridine, methyl iodide and 18-crown-6 (18C6). The cocrystal was characterized by FT-IR, UV-DRS and PL spectroscopy, single crystal and powder X-ray diffraction (XRD) analysis, SEM and EDS analysis, and thermogravimetric analysis. The bulk phase purity of the compound is confirmed by powder XRD analysis, whereas single-crystal XRD confirms that it packs in a monoclinic system with centrosymmetric space group (<jats:italic>P</jats:italic>2<jats:sub>1</jats:sub>/<jats:italic>c</jats:italic>). Single crystal XRD shows that the asymmetric unit is C<jats:sub>6</jats:sub>H<jats:sub>12</jats:sub>O<jats:sub>3</jats:sub>, [C<jats:sub>6</jats:sub>H<jats:sub>8</jats:sub>NO]<jats:sup>+</jats:sup>[I]¯. The presence of C–H⋯O, C–H⋯I and O–H⋯I intermolecular contacts helps to achieve crystal cohesion. The direct band gap energy has been estimated to be 3.21 eV using diffuse reflectance spectral measurements. Thermogravimetric analysis was employed to determine the compound’s thermal behaviour concerning temperature. EDS and SEM investigations were used to examine the elemental composition and surface morphology of the compound.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias A. Teichtmeister, Alexander Hugo Bernhart, Klaus Wurst, Gunter Heymann, Hubert Huppertz
{"title":"High-pressure/high-temperature synthesis of a new polymorphic series of lanthanoid cadmium borates, LnCdB6O10(OH)3 (Ln = Sm–Er)","authors":"Tobias A. Teichtmeister, Alexander Hugo Bernhart, Klaus Wurst, Gunter Heymann, Hubert Huppertz","doi":"10.1515/zkri-2024-0063","DOIUrl":"https://doi.org/10.1515/zkri-2024-0063","url":null,"abstract":"We report on the synthesis, structure determination, and characterization of a new series of compounds <jats:italic>Ln</jats:italic>CdB<jats:sub>6</jats:sub>O<jats:sub>10</jats:sub>(OH)<jats:sub>3</jats:sub> (<jats:italic>Ln</jats:italic> = Sm–Er). Syntheses were carried out in a Walker-type multianvil device at 7 GPa and 650 °C. Structure determinations revealed the coexistence of an orthorhombic and a monoclinic polymorph, depending on the ionic radius of the lanthanoid cation. The orthorhombic structural variants crystallize non-centrosymmetrically in the space group <jats:italic>Pna</jats:italic>2<jats:sub>1</jats:sub> (no. 33), while the monoclinic modifications crystallize in space group <jats:italic>P</jats:italic>2<jats:sub>1</jats:sub>/<jats:italic>c</jats:italic> (no. 14). Both modifications display a layered crystal structure built up by a repeating [B<jats:sub>6</jats:sub>O<jats:sub>13</jats:sub>]<jats:sup>8−</jats:sup> building block as their main structural feature.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}