{"title":"Simplified Formulas for External Pressure Design","authors":"W. M. Kirkland, Christopher R. Bett","doi":"10.1115/pvp2022-78354","DOIUrl":"https://doi.org/10.1115/pvp2022-78354","url":null,"abstract":"\u0000 Design of vessels for external pressure currently requires a chart-based solution or analytical approaches which are not necessarily intuitive. In this paper, we propose simple formulas for the external pressure evaluation of pipes and other cylindrical pressure vessels. We present a conceptual comparison between the elastic and elastic-plastic stability of structural columns and that of cylindrical vessels of long, intermediate, and short length. Their common features allow an accurate and straightforward approach for external pressure design. The approach is also extended to spherical caps, conical vessels, and formed heads.\u0000 We compare the method presented to the current acceptance criteria from various design codes, including the ASME Boiler and Pressure Vessel Code Section VIII, Code Case 2286, and EN 13445-3, as well as codes for steel and aluminum structures. In further discussion, the simplified method is compared against the results of more than 500 experiments on the buckling of cylindrical and spherical vessels published over the past two centuries.\u0000 This simple but accurate approximation is conceptually intuitive, analytically straightforward, and shows potential utility in pressure vessel design codes, as well as piping design codes such as B31 that currently reference ASME VIII for external pressure design.1","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87349190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probabilistic Fracture Mechanics Codes for Piping International Benchmark – Part 1: Deterministic Comparisons","authors":"Matthew Homiack","doi":"10.1115/pvp2022-84724","DOIUrl":"https://doi.org/10.1115/pvp2022-84724","url":null,"abstract":"\u0000 This paper describes deterministic benchmark comparisons of 14 probabilistic fracture mechanics (PFM) codes. The benchmark problem focused on determining the leak-before-break behavior of a nickel-based alloy weld in a large-bore piping system of a pressurized-water reactor. The modeled degradation mechanism was primary water stress-corrosion cracking (PWSCC). The benchmark problem was deterministically analyzed with the PFM codes using their models for crack growth rates, stress-intensity factors, crack-opening displacements (CODs), crack transition from inside surface-breaking cracks to through-wall cracks, leak rates, and crack stability. Several output quantities of interest relevant to leak-before-break behavior were then compared. Other outputs as a function of the simulated component operating time were also compared, including the crack lengths and depths, stress-intensity factors, inside and outside surface CODs, and leak rates. An interpretation of these comparisons is provided in relation to the underlying models to better understand the effects of the different modeling approaches. Insights from this study will be used to inform probabilistic comparisons of the PFM codes, which will be presented in a subsequent paper.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"146 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86024117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Pipe Flange Connection Assembly Efficiencies Using Common Tools and Patterns","authors":"Shane Szemanek, Scott R. Hamilton","doi":"10.1115/pvp2022-78696","DOIUrl":"https://doi.org/10.1115/pvp2022-78696","url":null,"abstract":"\u0000 ASME PCC-1 (2010) introduced 5 different alternative bolting patterns in contrast to the Legacy Pattern that is commonly known as the “Star Pattern”. For the past 15 years, research has shown that these Alternative Patterns issued by PCC-1 are more efficient than the Star Pattern.\u0000 However, the research has shown tool movement around the flange to show efficiency, but not actual assembly time and/or assembly time savings from each one of these alternative bolting patterns.\u0000 While all of these alternative bolting patterns are not appropriate for every gasket type and might not add efficiency for smaller diameter flanges, there are many mid-stream and downstream petrochemical applications that could benefit from further knowledge of these efficiencies.\u0000 The goal of this paper is to not only determine which one of these alternative patterns is the most efficient but to also compare different types of assembly tools with each pattern.\u0000 This analysis does not address the accuracy and repeatability of each method and tool type, but its function is to determine the optimum combination of tool and pattern selection to decrease downtime and Lost Profit Opportunity (LPO).\u0000 This paper will use both bolting patterns and assembly tools on an 18” 600 Class flange, that has (24) 1-1/4” studs to develop a method for determining further testing of bolting pattern and bolting tools.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80153904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Nakai-Chapman, C. Fietek, J. Sakai, Young-Bae Park
{"title":"Metal Additive Manufacturing Simulation Using Sequentially Coupled Thermo-Mechanical Analysis","authors":"J. Nakai-Chapman, C. Fietek, J. Sakai, Young-Bae Park","doi":"10.1115/pvp2022-84612","DOIUrl":"https://doi.org/10.1115/pvp2022-84612","url":null,"abstract":"\u0000 Additive manufacturing (AM) has become one of the most revolutionary technologies for the fabrication of metallic parts within the industry; notably, the use of existing metals has significantly eased the adoption of AM in manufacturing. The metal AM method can produce complex parts with effective cost. This process, however, involves rapid heating and solidification, resulting in a high thermal gradient. It causes undesired residual stress and distortion that significantly affects the final product’s integrity. This study investigates the features of a high thermal gradient, structural deformation, and residual stress involved in the powder bed fusion process in virtual environments. Powder bed fusion is an additive manufacturing method that uses a laser or electron beam to melt and fuse the metal material to form a three-dimensional part. A simulation model was developed using layer-to-layer scanning paths based on a 3D geometry in the 3DEXPERIENCE platform. Commercial finite element analysis (FEA) software, Abaqus CAE, is used for the sequentially coupled thermo-mechanical analysis. The temperature history is first calculated in an uncoupled thermal analysis and introduced as a predefined field in the subsequent structural analysis. In the sequentially coupled thermo-mechanical analysis, the thermal evolution of the problem affects the structural response, but the temperature field is not dependent on the stress field. Heat transfer in additive manufacturing is time-dependent, and temperature distribution in an additively manufactured part is non-uniform. Hence a time-dependent heat conduction problem is solved to analyze the process. After the thermal analysis is completed, the quasi-static equilibrium of stress is determined for each time step. An isotropic hardening rule was utilized to consider the evolution of plastic deformation.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83854299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Study on Buckling Behaviors of Thin-Walled Longitudinal Corrugated Cylindrical Shells Under Axial Compression Loads","authors":"He Ma, Zhiping Chen, P. Jiao, Xinyi Lin","doi":"10.1115/pvp2022-84396","DOIUrl":"https://doi.org/10.1115/pvp2022-84396","url":null,"abstract":"\u0000 Thin-walled cylindrical shell structures are widely used in various engineering fields due to their highly efficient load carrying capacity. This kind of structures is prone to buckling failure when subjected to axial compression loads. Machining the shell into corrugated shape is an effective method to prevent buckling. Rational design of corrugated shells can improve the load carrying efficiency of shell structures. However, there are few studies focused on the effects of various parameters on the longitudinal corrugated cylindrical shell buckling. In this paper, numerical studies are performed to analyze the factors affecting the buckling behaviors of thin-walled longitudinal corrugated cylindrical shells under axial compression loads. The cross section of the corrugated shell is obtained by superposing the sine curve on the reference circle. The critical buckling load, buckling mode and imperfection sensitivity of the longitudinal corrugated cylindrical shells are examined and compared with ordinary cylindrical shells. The effects of shell dimensions and material yield strength are taken into account. In addition, the influence of cross section shape parameters on the critical buckling load is considered, including the amplitude A and wave number k. Results show that the axial load carrying capacity of longitudinal corrugated cylindrical shells is better than ordinary cylindrical shells, and rational design of cross section shape can enhance the stability of corrugated shells. This work can provide some reference for relevant experimental studies. Furthermore, it can also give some guides for the application of thin-walled longitudinal corrugated cylindrical shells in actual engineering.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80579540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on Post-Buckling Behaviors of Lower Heads for Fracture Control of Reactor Vessels Under BDBE","authors":"N. Kasahara, Masatoshi Murohara, Takuya Sato","doi":"10.1115/pvp2022-84449","DOIUrl":"https://doi.org/10.1115/pvp2022-84449","url":null,"abstract":"\u0000 As a lesson learned from the Fukushima nuclear power plant accident, the industry recognized the importance of mitigating accident consequences after Beyond Design Basis Events (BDBE). We propose the concept of applying fracture control to mitigate failure consequences of nuclear components under BDBE. This paper studies post-buckling behaviors of lower heads for fracture control of reactor vessels under BDBE.\u0000 In the case of a reactor vessel that supports the weight of the vessel at the top, such as a fast reactor, if a loss of cooling accident occurs, the cylindrical body may rupture with large creep deformation due to extremely high temperature. In order to cope with this event, application of fracture control concept is proposed. As a concrete example of the countermeasure, it is considered that reactor vessel lower heads can contact the floor or other structures to relieve the load on the cylindrical body and avoid catastrophic failure of the cylindrical body. In order to achieve this, it is necessary that even if a lower head in contact with the floor or other structures buckles, the subsequent post-buckling behavior is stable to maintain the load carrying capacity, and there is a strength margin before the failure of the lower head.\u0000 Buckling experiments and analyses were conducted on spherical shells with central cylindrical bodies and smooth spherical shells in contact with a rigid floor. The post-buckling behavior of all the above spherical shells was stable to maintain the load carrying capacity, and they did not fail immediately after buckling occurs.\u0000 From above results that the load carrying capacity of the lower head is sufficiently maintained after buckling, it was shown that the rupture of the cylindrical body of reactor vessel can be controlled by redistributing the load on the cylindrical body, which is expected to rupture due to extremely high temperature at a loss of cooling function.re.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73114495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Active Magnetic Saddle Based on Electro-Permanent Magnetic Adhesion Mechanism","authors":"Hongsheng Zhang, Yanbin Li, K. Guo, Jian Jiang","doi":"10.1115/pvp2022-84528","DOIUrl":"https://doi.org/10.1115/pvp2022-84528","url":null,"abstract":"\u0000 In this paper, a novel transport technique for pressure vessels based on electro-permanent magnet (EPM) technology is proposed. The magnetic force and the resulting transport gripping force (TGF) are applied by controllable permanent magnets rather than conventional electromagnet or permanent magnet technology, and the current is only required at the moment of loading or unloading the TGF. The EPM system is convenient in control, and low in energy consumption. The experimental device including magnetic chuck, web of foundation girder and other components is constructed based on the EPM characteristics and requirements of transported equipment. The EPM units are used to generate magnetic force to realize loading and unloading of TGF. The principles and advantages of EPM transport technique are first elaborated with theoretical derivation and magnetic field simulation. Then, a series of experiments such as electrical circuit, magnetic field and tensile test were performed for the EPM chuck and magnetic saddle. It is demonstrated that the TGF applied by the designed system is large enough for the transportation of the pressure vessel. Also, the energy saving is significant using the EPM transportation system.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"121 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77130827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of the API 579-1/ASME FFS-1 KPECL and KCECLL Stress Intensity Factors","authors":"S. Altstadt","doi":"10.1115/pvp2022-84922","DOIUrl":"https://doi.org/10.1115/pvp2022-84922","url":null,"abstract":"\u0000 The API 579-1/ASME FFS-1 2016 Fitness-For-Service stress intensity factor solution for a plate with an embedded crack, infinite length, through-wall fourth order polynomial stress distribution (KPECL) was independently investigated in this work. Finite element models of cracked plates subjected to various applied stress fields were created and used to estimate stress intensity factors (K), which were then used to calibrate the respective influence coefficient values (Gi). The comparison of the newly calculated values to the existing values shows reasonable agreement for some values and a substantial difference for others. The new influence coefficients were also compared to values published by Le Delliou and Barthelet (2007) for the parameter combinations that exactly overlap with API 579-1/ASME FFS-1 2016. Excellent agreement was found with the new values presented herein. API 579-1/ASME FFS-1 2016 also recommends that the KPECL solution can be used for a cylinder with an embedded crack, longitudinal direction, infinite length, through-wall fourth order polynomial stress distribution (KCECLL) when the ratio of the internal radius (Ri) to wall thickness (t) is greater than or equal to five. As part of this work, influence coefficient values were also calculated for Ri/t = 5 and are included in this paper. A comparison of each KPECL value to its respective KCECLL value indicates that the recommendation is a reasonable approximation. The new influence coefficient values are recommended for fitness for service assessments that involve either the KPECL scenario or the KCECLL scenario where Ri/t ≥ 5.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75875979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization and Property Analysis of the Sealing Structure of Type IV Cylinder for High-Pressure Hydrogen Storage","authors":"Jiahui Tao, Z. Fan, Peng Xu, Lu Wang, Jilin Xue","doi":"10.1115/pvp2022-84673","DOIUrl":"https://doi.org/10.1115/pvp2022-84673","url":null,"abstract":"\u0000 Composite overwrapped pressure cylinders with plastic liner (type IV) have a broad application prospect in high-pressure gaseous hydrogen storage due to their excellent properties, such as lightweight, corrosion resistance, fatigue resistance and low cost. Heterogeneous materials sealing is an important issue during the connection structure design between the plastic liner and the metal valve, where a rubber O-ring was often set for the sealing of hydrogen with high pressure. In this work, a finite element model (FEM) of the bottle mouth structure of composite overwrapped pressure cylinder composed of a plastic liner and a metal boss was established using the ABAQUS software, and the influences of boss shape and thickness of liner on the deformation and contact stress of rubber O-ring were analyzed. As a result, the shape and sizes of the metal boss and the liner were optimized and the connection structure between the liner and metal boss was determined. Based on the optimization, the effects of compression ratio, hydrogen pressure, backup ring and the temperature variation during the filling of composite overwrapped pressure vessel on the sealing performance of rubber O-ring were determined. The results of this work can provide guidance for the tightness analysis and lightweight design of composite overwrapped pressure vessels with plastic liners.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75467655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thick-Walled Cylindrical Specimens Under PTS Loading: Crack Propagation Analysis With XFEM-IGA","authors":"D. F. Mora Méndez, M. Niffenegger, G. Mao","doi":"10.1115/pvp2022-83771","DOIUrl":"https://doi.org/10.1115/pvp2022-83771","url":null,"abstract":"\u0000 The integrity assessment of reactor pressure vessel (RPV) often considers only the crack initiation to evaluate the safety margin and excludes the crack propagation analysis. In this contribution, the combined eXtended Finite Element (XFEM) method with the Initiation-Growth-Arrest (IGA) algorithm, shortly written as XFEM-IGA, is applied to a thick-walled cylindrical specimen with a circumferential crack under Pressurized Thermal Shock (PTS). The results of the crack propagation analysis are compared with the experimental ones to validate the approach, which were taken from large-scale experiments on thick-walled cylinders under PTS performed in the FALSIRE project. In order to simulate the cylinder with the XFEM-IGA approach, a reduced three dimensional finite element (FE) model of a small sector (a slice of the cylinder) is used by applying cyclic symmetry boundary conditions. Thus, the model profits from the cyclic symmetry not only of the cylinder geometry but also the circumferential crack. The closed-form for the stress intensity factor for an internal circumferential crack in a thick-walled cylinder is combined with the IGA algorithm and is presented to verify the quality of the results. The results are shown in terms of the SIF evolution and crack depth during the PTS transient. The crack depth shows several initiation-arrest-reinitiation cycles and final arrest. However, some differences in the number of these cycles and final crack depth are observed between the simulation and the experimental results.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80916580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}