Wiley Interdisciplinary Reviews: Computational Molecular Science最新文献

筛选
英文 中文
Computational biophysics meets cryo-EM revolution in the search for the functional dynamics of biomolecular systems 计算生物物理学与低温电子显微镜革命在探索生物分子系统功能动态中的结合
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-09-21 DOI: 10.1002/wcms.1689
Mauricio G. S. Costa, Mert Gur, James M. Krieger, Ivet Bahar
{"title":"Computational biophysics meets cryo-EM revolution in the search for the functional dynamics of biomolecular systems","authors":"Mauricio G. S. Costa,&nbsp;Mert Gur,&nbsp;James M. Krieger,&nbsp;Ivet Bahar","doi":"10.1002/wcms.1689","DOIUrl":"10.1002/wcms.1689","url":null,"abstract":"<p>There is a variety of experimental and computational techniques available to explore protein dynamics, each presenting advantages and limitations. One promising experimental technique that is driving the development of computational methods is cryo-electron microscopy (cryo-EM). Cryo-EM provides molecular-level structural data and first estimates of conformational landscape from single particle analysis but cannot track real-time protein dynamics and may contain uncertainties in atomic positions especially at highly dynamic regions. Molecular simulations offer atomic-level insights into protein dynamics; however, their computing time requirements limit the conformational sampling accuracy, and it is often hard, to assess by full-atomic simulations the cooperative movements of biological interest for large assemblies such as those resolved by cryo-EM. Coarse-grained (CG) simulations permit us to explore such systems, but at the costs of lower resolution and potentially incomplete sampling of conformational space. On the other hand, analytical methods may circumvent sampling limitations. In particular, elastic network models-based normal mode analyses (ENM-NMA) provide unique solutions for the complete mode spectra near equilibrium states, even for systems of megadaltons, and may thus deliver information on mechanisms of motions relevant to biological function. Yet, they lack atomic resolution as well as temporal information for non-equilibrium systems. Given the complementary nature of these methods, the integration of molecular simulations and ENM-NMA into hybrid methodologies has gained traction. This review presents the current state-of-the-art in structure-based computations and how they are helping us gain a deeper understanding of biological mechanisms, with emphasis on the development of hybrid methods accompanying the advances in cryo-EM.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1689","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136129851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 13, Issue 5 封面图片,第13卷第5期
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-09-21 DOI: 10.1002/wcms.1688
Juan V. Alegre-Requena, Shree Sowndarya S. V., Raúl Pérez-Soto, Turki M. Alturaifi, Robert S. Paton
{"title":"Cover Image, Volume 13, Issue 5","authors":"Juan V. Alegre-Requena,&nbsp;Shree Sowndarya S. V.,&nbsp;Raúl Pérez-Soto,&nbsp;Turki M. Alturaifi,&nbsp;Robert S. Paton","doi":"10.1002/wcms.1688","DOIUrl":"https://doi.org/10.1002/wcms.1688","url":null,"abstract":"<p>The cover image is based on the Software Focus <i>AQME: Automated quantum mechanical environments for researchers and educators</i> by Juan V. Alegre-Requena et al., https://doi.org/10.1002/wcms.1663.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 5","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1688","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ab initio electronic structure calculations based on numerical atomic orbitals: Basic fomalisms and recent progresses 基于数值原子轨道的 Ab initio 电子结构计算:基本反常现象和最新进展
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-09-12 DOI: 10.1002/wcms.1687
Peize Lin, Xinguo Ren, Xiaohui Liu, Lixin He
{"title":"Ab initio electronic structure calculations based on numerical atomic orbitals: Basic fomalisms and recent progresses","authors":"Peize Lin,&nbsp;Xinguo Ren,&nbsp;Xiaohui Liu,&nbsp;Lixin He","doi":"10.1002/wcms.1687","DOIUrl":"10.1002/wcms.1687","url":null,"abstract":"<p>The numerical atomic orbital (NAO) basis sets offer a computationally efficient option for electronic structure calculations, as they require fewer basis functions compared with other types of basis sets. Moreover, their strict localization allows for easy combination with current linear scaling methods, enabling efficient calculation of large physical systems. In recent years, NAO bases have become increasingly popular in modern electronic structure codes. This article provides a review of the ab initio electronic structure calculations using NAO bases. We begin by introducing basic formalisms of the NAO-based electronic structure method, including NAO base set generation, self-consistent calculations, force, and stress calculations. We will then discuss some recent advances in the methods based on the NAO bases, such as real-time dependent density functional theory (rt-TDDFT), efficient implementation of hybrid functionals, and other advanced electronic structure methods. Finally, we introduce the ab initio tight-binding model, which can be generated directly after the self-consistent calculations. The model allows for efficient calculation of electronic structures, and the associated topological, and optical properties of the systems.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the prototype catalyst TiO2 surface with the help of density functional theory calculation 借助密度泛函理论计算了解原型催化剂 TiO2 表面
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-09-02 DOI: 10.1002/wcms.1686
Ruimin Wang, Binli Wang, Abubakar Sadiq Abdullahi, Hongjun Fan
{"title":"Understanding the prototype catalyst TiO2 surface with the help of density functional theory calculation","authors":"Ruimin Wang,&nbsp;Binli Wang,&nbsp;Abubakar Sadiq Abdullahi,&nbsp;Hongjun Fan","doi":"10.1002/wcms.1686","DOIUrl":"10.1002/wcms.1686","url":null,"abstract":"<p>Titanium dioxide (TiO<sub>2</sub>) is one of the most technologically promising oxides with a broad range of catalytic and photocatalytic activities. Theoretical modeling, especially density functional theory calculations, has been extensively carried out to understand the geometric structure, electronic structure, reactivity, and reaction mechanisms of TiO<sub>2</sub> systems, as well as to develop new catalysts with improved performances. This review summarizes the recent theoretical progress on the well-defined surfaces of TiO<sub>2</sub> crystalline, and focuses on the structures, adsorptions, and reactions on the surface and at the interface. The theoretical methods and models, surface defects, surface doping, water splitting and H<sub>2</sub> evolution, methanol conversion, CO<sub>2</sub> reduction and CO oxidation, SO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> degradation, CH<sub>4</sub> conversion, organic pollutant degradation, C<span></span>H bond activation and C<span></span>C bond formation, dye sensitization, as well as the applications of TiO<sub>2</sub> in some other fields, have been discussed in detail.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123197734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational drug design targeting intrinsically disordered proteins 针对内在无序蛋白质的合理药物设计
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-08-26 DOI: 10.1002/wcms.1685
Hanping Wang, Ruoyao Xiong, Luhua Lai
{"title":"Rational drug design targeting intrinsically disordered proteins","authors":"Hanping Wang,&nbsp;Ruoyao Xiong,&nbsp;Luhua Lai","doi":"10.1002/wcms.1685","DOIUrl":"https://doi.org/10.1002/wcms.1685","url":null,"abstract":"<p>Intrinsically disordered proteins (IDPs) are proteins that perform important biological functions without well-defined structures under physiological conditions. IDPs can form fuzzy complexes with other molecules, participate in the formation of membraneless organelles, and function as hubs in protein–protein interaction networks. The malfunction of IDPs causes major human diseases. However, drug design targeting IDPs remains challenging due to their highly dynamic structures and fuzzy interactions. Turning IDPs into druggable targets provides a great opportunity to extend the druggable target-space for novel drug discovery. Integrative structural biology approaches that combine information derived from computational simulations, artificial intelligence/data-driven analysis and experimental studies have been used to uncover the dynamic structures and interactions of IDPs. An increasing number of ligands that directly bind IDPs have been found either by target-based experimental and computational screening or phenotypic screening. Along with the understanding of IDP binding with its partners, structure-based drug design strategies, especially conformational ensemble-based computational ligand screening and computer-aided ligand optimization algorithms, have greatly accelerated the development of IDP ligands. It is inspiring that several IDP-targeting small-molecule and peptide drugs have advanced into clinical trials. However, new computational methods need to be further developed for efficiently discovering and optimizing specific and potent ligands for the vast number of IDPs. Along with the understanding of their dynamic structures and interactions, IDPs are expected to become valuable treasure of drug targets.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71986647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Coarse-grained molecular dynamics simulation of polymers: Structures and dynamics 聚合物的粗粒分子动力学模拟:结构与动力学
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-08-03 DOI: 10.1002/wcms.1683
Rui Shi, Hu-Jun Qian, Zhong-Yuan Lu
{"title":"Coarse-grained molecular dynamics simulation of polymers: Structures and dynamics","authors":"Rui Shi,&nbsp;Hu-Jun Qian,&nbsp;Zhong-Yuan Lu","doi":"10.1002/wcms.1683","DOIUrl":"https://doi.org/10.1002/wcms.1683","url":null,"abstract":"<p>For the simulations of polymeric systems, coarse-grained (CG) molecular dynamics simulations are computationally demanding not only because of their high computational efficiency, but also these CG models can provide sufficient structural and dynamical properties at both micro- and meso-scopic levels. During the past decades, developments of these CG models are roughly in two directions, that is, generic and chemically system-specific models. The developme of the formmer focuses on the capability of the model to capature the general properties of the system, for instance, scaling relations between both structural and dynamic properties with respect to chain length. On the other hand, to bridging the gap between physics and chemistry, chemically-specifi models are also widely developed which are able to retain the inherent chemical–physical properties for a given polymer system. However, due to the reduction of atomistic degree of freedom a faithful reproduction of structure and especialy dynamics properties of the system is the maijor challenge. In this review, after a brief introduction of some widely used generic models, we present an overview of both recent achievements and remainning challendges in the development of chemically-specific CG approaches, for the simulations of polymer systems.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71955634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ChemTSv2: Functional molecular design using de novo molecule generator ChemTSv2:使用从头分子发生器的功能分子设计
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-07-31 DOI: 10.1002/wcms.1680
Shoichi Ishida, Tanuj Aasawat, Masato Sumita, Michio Katouda, Tatsuya Yoshizawa, Kazuki Yoshizoe, Koji Tsuda, Kei Terayama
{"title":"ChemTSv2: Functional molecular design using de novo molecule generator","authors":"Shoichi Ishida,&nbsp;Tanuj Aasawat,&nbsp;Masato Sumita,&nbsp;Michio Katouda,&nbsp;Tatsuya Yoshizawa,&nbsp;Kazuki Yoshizoe,&nbsp;Koji Tsuda,&nbsp;Kei Terayama","doi":"10.1002/wcms.1680","DOIUrl":"https://doi.org/10.1002/wcms.1680","url":null,"abstract":"<p>Designing functional molecules is the prerogative of experts who have advanced knowledge and experience in their fields. To democratize automatic molecular design for both experts and nonexperts, we introduce a generic open-sourced framework, ChemTSv2, to design molecules based on a de novo molecule generator equipped with an easy-to-use interface. Besides, ChemTSv2 can easily be integrated with various simulation packages, such as Gaussian 16 package, and supports a massively parallel exploration that accelerates molecular designs. We exhibit the potential of molecular design with ChemTSv2, including previous work, such as chromophores, fluorophores, drugs, and so forth. ChemTSv2 contributes to democratizing inverse molecule design in various disciplines relevant to chemistry.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71988008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Explainable artificial intelligence: A taxonomy and guidelines for its application to drug discovery 可解释人工智能:分类法及其在药物发现中的应用指南
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-07-26 DOI: 10.1002/wcms.1681
Ignacio Ponzoni, Juan Antonio Páez Prosper, Nuria E. Campillo
{"title":"Explainable artificial intelligence: A taxonomy and guidelines for its application to drug discovery","authors":"Ignacio Ponzoni,&nbsp;Juan Antonio Páez Prosper,&nbsp;Nuria E. Campillo","doi":"10.1002/wcms.1681","DOIUrl":"https://doi.org/10.1002/wcms.1681","url":null,"abstract":"<p>Artificial intelligence (AI) is having a growing impact in many areas related to drug discovery. However, it is still critical for their adoption by the medicinal chemistry community to achieve models that, in addition to achieving high performance in their predictions, can be trusty explained to the end users in terms of their knowledge and background. Therefore, the investigation and development of explainable artificial intelligence (XAI) methods have become a key topic to address this challenge. For this reason, a comprehensive literature review about explanation methodologies for AI based models, focused in the field of drug discovery, is provided. In particular, an intuitive overview about each family of XAI approaches, such as those based on feature attribution, graph topologies, or counterfactual reasoning, oriented to a wide audience without a strong background in the AI discipline is introduced. As the main contribution, we propose a new taxonomy of the current XAI methods, which take into account specific issues related with the typical representations and computational problems study in the design of molecules. Additionally, we also present the main visualization strategies designed for supporting XAI approaches in the chemical domain. We conclude with key ideas about each method category, thoroughly providing insightful analysis about the guidelines and potential benefits of their adoption in medical chemistry.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71986348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical designs of low-barrier ferroelectricity 低势垒铁电的理论设计
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-07-26 DOI: 10.1002/wcms.1682
Ting-Ting Zhong, Yaxin Gao, Yangyang Ren, Menghao Wu
{"title":"Theoretical designs of low-barrier ferroelectricity","authors":"Ting-Ting Zhong,&nbsp;Yaxin Gao,&nbsp;Yangyang Ren,&nbsp;Menghao Wu","doi":"10.1002/wcms.1682","DOIUrl":"https://doi.org/10.1002/wcms.1682","url":null,"abstract":"<p>Ferroelectrics with electrically switchable spontaneous polarizations can be used for information storage, where a low switching barrier is favorable to reduce the energy cost and enhance the speed for data writing. Meanwhile their robustness at working temperature should be ensured, which is a challenge for the designs of low-barrier ferroelectrics. Here we review several types of ferroelectric mechanisms that may render both low switching barriers and room-temperature robustness, which have been theoretically proposed in previous studies. (1) The prediction of sliding ferroelectricity with ultralow switching barriers has been experimentally confirmed in a series of van der Waals layers, which may enable convenient electrical control of various physical properties in 2D materials, like magnetic, photovoltaic, valleytronic and topological properties. (2) Hydrogen-bonded ferroelectricity spontaneously formed by head-to-tail chains can be switched by proton-transfer crossing a low barrier, and a mechanism of ultra-high piezoelectricity utilizing the specific features of hydrogen bonding has been proposed. (3) High-ionicity ferroelectricity induced by covalent-like ionic bondings may entail high polarizations and low barriers during switching, which is attributed to the features of long-range Coulomb interaction, and the long ion-displacements crossing unitcell may give rise to unconventional ferroelectricity with quantized polarizations even in crystals of non-ferroelectric point groups. Those low-barrier ferroelectric mechanisms may bring in both new physics and technological advances, which are to be further explored.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71987015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of computational approaches in biomembranes: From structure to function 计算方法在生物膜中的应用:从结构到功能
IF 11.4 2区 化学
Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-07-06 DOI: 10.1002/wcms.1679
Jingjing Guo, Yiqiong Bao, Mengrong Li, Shu Li, Lili Xi, Pengyang Xin, Lei Wu, Huanxiang Liu, Yuguang Mu
{"title":"Application of computational approaches in biomembranes: From structure to function","authors":"Jingjing Guo,&nbsp;Yiqiong Bao,&nbsp;Mengrong Li,&nbsp;Shu Li,&nbsp;Lili Xi,&nbsp;Pengyang Xin,&nbsp;Lei Wu,&nbsp;Huanxiang Liu,&nbsp;Yuguang Mu","doi":"10.1002/wcms.1679","DOIUrl":"https://doi.org/10.1002/wcms.1679","url":null,"abstract":"<p>Biological membranes (biomembranes) are one of the most complicated structures that allow life to exist. Investigating their structure, dynamics, and function is crucial for advancing our knowledge of cellular mechanisms and developing novel therapeutic strategies. However, experimental investigation of many biomembrane phenomena is challenging due to their compositional and structural complexity, as well as the inherently multi-scalar features. Computational approaches, particularly molecular dynamics (MD) simulations, have emerged as powerful tools for addressing the atomic details of biomembrane systems, driving breakthroughs in our understanding of biomembranes and their roles in cellular function. This review presents an overview of the latest advancements in related computational approaches, from force fields and model construction to MD simulations and trajectory analysis. We also discussed current hot research topics and challenges. Finally, we outline future directions, emphasizing the integration of force field development, enhanced sampling techniques, and data-driven approaches to accelerate the growth of this field in the years to come. We aim to equip readers with an understanding of the promise and limitations of emerging computational technologies in biomembrane systems and offer valuable recommendations for future research endeavors.</p><p>This article is categorized under:\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":11.4,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71949472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信