Vadose Zone Journal最新文献

筛选
英文 中文
Estimation of soil moisture using environmental covariates and machine learning algorithms in Cathedral Peak Catchment, South Africa 使用环境协变量和机器学习算法估算南非大教堂峰流域土壤湿度
3区 地球科学
Vadose Zone Journal Pub Date : 2023-10-25 DOI: 10.1002/vzj2.20289
Daniel Murungi Kironde Kibirige, Shaeden Gokool, Zama Nosihle Mkhize
{"title":"Estimation of soil moisture using environmental covariates and machine learning algorithms in Cathedral Peak Catchment, South Africa","authors":"Daniel Murungi Kironde Kibirige, Shaeden Gokool, Zama Nosihle Mkhize","doi":"10.1002/vzj2.20289","DOIUrl":"https://doi.org/10.1002/vzj2.20289","url":null,"abstract":"Abstract Soil moisture (SM) is a fundamental constituent of the terrestrial environment and the hydrological cycle. Owing to its significant influence on catchment hydrological responses, it can be utilized as an indicator of floods and droughts to aid early warning systems. This study aimed to develop a field‐scale method to estimate SM using parametric and machine learning‐based methods to compare whether advanced artificial intelligence methods can give similar results as traditional methods. Considering this, monthly observed SM data (from the top 10 cm), environmental covariates, and remotely sensed data from March 2019 to July 2021 for the Cathedral Peak Research Catchments VI and IX in South Africa were obtained. From the 241 observations obtained across 12 sites, 160 (∼66%) were used for model training, while the remaining 81 (∼34%) were used for model testing. Employing 10‐fold cross‐validation, the individual machine learning models (viz., support vector machine [SVM], random forest (RF), k‐nearest neighbor, classification and regression trees [Rpart], and generalized linear model) displayed a satisfactory performance ( R 2 = 0.52–0.79; root mean square error = 3.79–5.80). In the validation phase, the RF model displayed a superior performance, followed by the SVM. Subsequent SM estimation using the hybrid model produced satisfactory results in training ( R 2 = 0.90) and testing ( R 2 = 0.45). The results obtained from this study can aid in predicting SM variations in catchments with limited monitoring. Furthermore, this model can be applied in drought monitoring, forecasting, and informing agricultural management practices.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"60 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical test of soil layering effects on theoretical and practical Beerkan infiltration runs 土壤分层对贝尔坎入渗理论和实践影响的数值试验
3区 地球科学
Vadose Zone Journal Pub Date : 2023-10-19 DOI: 10.1002/vzj2.20283
Vincenzo Bagarello, Massimo Iovino, Jianbin Lai
{"title":"A numerical test of soil layering effects on theoretical and practical Beerkan infiltration runs","authors":"Vincenzo Bagarello, Massimo Iovino, Jianbin Lai","doi":"10.1002/vzj2.20283","DOIUrl":"https://doi.org/10.1002/vzj2.20283","url":null,"abstract":"Abstract With reference to a more compacted and less conductive upper soil layer overlying a less compacted and more conductive subsoil, a simple three‐dimensional (3D) infiltration run is expected to yield more representative results of the upper layer than the subsoil. However, there is the need to quantitatively establish what is meant by more representativeness. At this aim, numerically simulated infiltration was investigated for a theoretically unconfined process under a null ponded head of water (d0H0 setup, with d = depth of ring insertion and H = ponded depth of water) and a practical Beerkan run (d1H1 setup, d = H = 1 cm). The considered layered soils differed by both the layering degree (from weak to strong; subsoil more conductive than the upper soil layer by 2.3–32.4 times, depending on the layering degree) and the thickness of the upper soil layer (0.5–3 cm). It was confirmed that water infiltration should be expected to be more representative of the upper soil layer when this layer is the less permeable since, for a 2‐h experiment, the instantaneous infiltration rates for the layered soil were 1.0–2.1 times greater than those of the homogeneous low‐permeable soil and 1.3–20.7 smaller than those of the homogeneous coarser soil that constituted the subsoil. Similarity with the homogeneous fine soil increased as expected as the upper layer became thicker. For a weak layering condition, the layered soil yielded an intermediate infiltration as compared with that of the two homogeneous soils forming the layered system. For a strong layering degree, the layered soil was more similar to the homogeneous fine soil than to the homogeneous coarse soil. Using the practical setup instead of the theoretical one should have a small to moderate effect on the instantaneous infiltration rates since all the calculated percentage differences between the d1H1 and d0H0 setups fell into the relatively narrow range of −18.8% to +17.4%. A sequential analysis procedure appeared usable to detect layering conditions but with some modifications as compared with the originally proposed procedure. The practical setup enhanced the possibility to recognize the time at which the characteristics of the subsoil start to influence the infiltration process. In conclusion, this investigation contributed to better interpret both the theoretical and the practically established 3D infiltration process in a soil composed of a less conductive upper soil layer overlying a more conductive subsoil and it also demonstrated that modifying the recently proposed sequential analysis procedure only using infiltration data could be advisable to determine the time when layering starts to influence the process.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into tension‐mediated and antecedent water effects on soil water isotopic composition 对土壤水同位素组成的张力介导和先前水效应的见解
3区 地球科学
Vadose Zone Journal Pub Date : 2023-10-19 DOI: 10.1002/vzj2.20288
Paulina Deseano Diaz, Thai Nong, Nicolas Brüggemann, Maren Dubbert, Mathieu Javaux, Natalie Orlowski, Harry Vereecken, Youri Rothfuss
{"title":"Insights into tension‐mediated and antecedent water effects on soil water isotopic composition","authors":"Paulina Deseano Diaz, Thai Nong, Nicolas Brüggemann, Maren Dubbert, Mathieu Javaux, Natalie Orlowski, Harry Vereecken, Youri Rothfuss","doi":"10.1002/vzj2.20288","DOIUrl":"https://doi.org/10.1002/vzj2.20288","url":null,"abstract":"Abstract Using isotopic spike experiments, we investigated the existence and magnitude of soil‐mediated isotopic effects and of the interaction between isotopically distinct soil water pools, both associated in isotopic mismatches between water extracted from soil and soil water taken up by the roots. For this, we applied and compared four established techniques commonly used for the extraction of water (vapor) from soil, three of them relying on destructive soil sampling (cryogenic vacuum distillation, centrifugation, and direct water vapor equilibration), and one being a nondestructive in situ online technique. We observed an almost complete mixing of sequentially added, isotopically distinct water samples to a pure quartz sand (memory effect). The isotopic composition of water held at high soil tension in the pure quartz sand (pF = 2) as well as in a sandy soil (pF = 1.8 and 3) deviated considerably from that of the added water (tension effect). However, we could attribute this deviation not exclusively to a soil‐mediated effect but also to methodological shortcomings during our experiments. Finally, we found the following decreasing trend in precision as well as in accuracy of the used water extraction methods: in situ online > centrifugation > direct water vapor equilibration > cryogenic vacuum distillation. The investigation of isotopic fractionation of soil water due to physicochemical processes in soil can be facilitated if the experimental techniques used do not involve isotopic fractionation. In addition, methodological uncertainties and inaccuracies can be minimized by method standardization, increasing the potential of water stable isotopic monitoring in ecohydrological studies.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135732569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water partitioning and migration in unsaturated bentonites by low‐field NMR characterization 低场核磁共振表征非饱和膨润土中水的分配和迁移
3区 地球科学
Vadose Zone Journal Pub Date : 2023-10-16 DOI: 10.1002/vzj2.20284
Ling Peng, Fan Zhang, Yi Dong, Chi Zhang
{"title":"Water partitioning and migration in unsaturated bentonites by low‐field NMR characterization","authors":"Ling Peng, Fan Zhang, Yi Dong, Chi Zhang","doi":"10.1002/vzj2.20284","DOIUrl":"https://doi.org/10.1002/vzj2.20284","url":null,"abstract":"Abstract Water behavior in bentonite clay pores is influenced by soil–water interaction mechanisms such as capillary and adsorptive forces. Quantitative measurement of these water statuses remains challenging, leading to the adoption of advanced techniques. This study uses low‐field nuclear magnetic resonance (NMR) technique to investigate water partitioning dynamics and changes in the water state in sodium‐rich Wyoming bentonite and calcium‐rich Denver bentonite under various humidity conditions. NMR T 2 relaxation and T 1 – T 2 mapping techniques, along with a multi‐Gaussian decomposition method, enable a quantitative analysis of capillary and adsorptive water in both bentonites. A conceptual water partitioning model is derived to explain water molecule trajectories of water molecules under unsaturated conditions. Our findings indicate distinct transitions in hydrated layers for Na + ‐smectite and Ca 2+ ‐smectite at different relative humidity (RH) ranges. Characteristic T 2 ranges are identified for capillary and adsorptive water in both clays and provide valuable insights into their water behavior. This study advances our understanding of soil properties at different RH environments and highlights the potential of low‐field NMR techniques in characterizing capillary and adsorptive water in bentonite clays.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136115052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of red soil macropores affected by slope erosion and sediment using computed tomography 利用计算机断层成像技术定量分析坡面侵蚀和泥沙对红壤大孔隙的影响
3区 地球科学
Vadose Zone Journal Pub Date : 2023-10-16 DOI: 10.1002/vzj2.20276
Si‐Yi Zhang, Bin He, Beibei Hao, Depeng Lv
{"title":"Quantification of red soil macropores affected by slope erosion and sediment using computed tomography","authors":"Si‐Yi Zhang, Bin He, Beibei Hao, Depeng Lv","doi":"10.1002/vzj2.20276","DOIUrl":"https://doi.org/10.1002/vzj2.20276","url":null,"abstract":"Abstract Soil structure is an important factor interacting with soil erosion and sediment processes. However, few studies have focused on the relationship between soil macroporosity and soil erosion across different terrains. The aim of this study was to quantify and compare soil properties and macroporosity characteristics in collapsing gully areas and to explore their impact on the formation and development of collapsing gullies. Soil cores were excavated at different positions of a typical collapsing gully and then scanned to analyze soil macropores. Soil properties and saturated hydraulic conductivity were also investigated. The results showed that the contents of sand, silt, and clay, the mean weight diameter of aggregates, and the infiltrate rates varied at different positions. The valley had the greatest macroporosity (1.09% ± 0.33%), the number (5919 ± 703), volume (1468 ± 194 mm 3 ), and surface area (10.4 ± 2.6 m 2 ) of macropores, as well as the mean volume (16.8 ± 7.4 mm 3 ) of macropores >1 mm 3 , whereas these indices were lowest at the slope (0.15% ± 0.14%, 1189 ± 747, 266 ± 188 mm 3 , 1.7 ± 1.4 m 2 , and 10.6 ± 2.9 mm 3 , respectively). The macroporosity and the number of macropore decreased with increasing depth but were also influenced by the erosion and sediment processes. The processes of sediment and the roots of vegetation also influenced the orientation of the macropores. Macropore characteristics at different sites of the collapsing gullies affected the soil water infiltration and hydraulic conductivity and further affected the processes of water erosion and mass erosion.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"178 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136115053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contactless estimation of soil moisture using leaky Rayleigh waves and a fully convolutional network 利用泄漏瑞利波和全卷积网络进行土壤湿度的非接触估计
3区 地球科学
Vadose Zone Journal Pub Date : 2023-10-12 DOI: 10.1002/vzj2.20285
Seoungmin Lee, Dong Kook Woo, Hajin Choi
{"title":"Contactless estimation of soil moisture using leaky Rayleigh waves and a fully convolutional network","authors":"Seoungmin Lee, Dong Kook Woo, Hajin Choi","doi":"10.1002/vzj2.20285","DOIUrl":"https://doi.org/10.1002/vzj2.20285","url":null,"abstract":"Abstract Soil moisture is a key factor that influences various aspects of ecosystem functioning. Measuring soil moisture without installing any objects in the soil is desirable because it allows for accurate characterizations of soil moisture while minimizing impacts on soil structure and ecology. In this study, we explored the potential of leaky Rayleigh waves as a proxy to contactlessly estimate soil moisture. We developed an ultrasonic system containing a transducer, receivers, and acoustic barrier. The specimens of sand, silt, and clay were utilized. Experiments were conducted over 4 months. We used a widely used soil‐embedded moisture sensor to compare and develop relationships between leaky Rayleigh waves and soil moisture. Our results showed that as soil moisture increased, the velocity and amplitude of leaky Rayleigh waves decreased because water molecules attracted to the soils led to their attenuation. However, their magnitudes were not considerable except for very dry soils. To overcome these limited relations to estimate soil moisture from leaky Rayleigh waves, we constructed authentic images based on the observed leaky Rayleigh waves and used them as inputs for a fully convolutional network. We found that the combination of the ultrasonic system and deep learning approach developed in this study were suitable for estimating soil moisture without soil disturbances (RMSE = 0.01 m 3 m −3 ). This study suggests that leaky Rayleigh waves have the potential to serve as a reliable proxy for determining soil moisture without the need for physical contact.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water vapor transport through bioenergy grass residues and its effects on soil water evaporation 生物质秸秆的水汽输送及其对土壤水分蒸发的影响
3区 地球科学
Vadose Zone Journal Pub Date : 2023-10-12 DOI: 10.1002/vzj2.20282
Henrique D. R. Carvalho, Adam M. Howard, Aziz Amoozegar, Carl R. Crozier, Amy M. Johnson, Joshua L. Heitman
{"title":"Water vapor transport through bioenergy grass residues and its effects on soil water evaporation","authors":"Henrique D. R. Carvalho, Adam M. Howard, Aziz Amoozegar, Carl R. Crozier, Amy M. Johnson, Joshua L. Heitman","doi":"10.1002/vzj2.20282","DOIUrl":"https://doi.org/10.1002/vzj2.20282","url":null,"abstract":"Abstract Miscanthus is a productive perennial grass that is suitable as a bioenergy crop in “marginal” lands (e.g., eroded soils) with low water holding capacity. However, little is known about the impact of miscanthus residues on vapor transport and soil water budgets. Laboratory experiments were conducted to measure the vapor conductance through miscanthus residues and its effect on soil water evaporation. The ranges for the length, width, and thickness of residue elements were 0.5–9.0, 0.1–0.5, and 0.1–0.5 cm, respectively. Average residue areal, bulk, and skeletal densities were 0.88 kg m −2 , 24 kg m −3 , and 1006 kg m −3 , respectively, giving a porosity of 0.98 m 3 m −3 . A power function described the decrease in conductance with increasing residue load. The corresponding conductance for a residue load of 0.88 kg m −2 was 1.6 mm s −1 . During the first days of a 60‐day drying experiment, cumulative evaporation showed logarithmic decay with increasing residue load. Conversely, cumulative evaporation during the last days of the study showed little difference between treatments. Measurements indicated that there is a “critical” residue load (∼1.0 kg m −2 ) beyond which evaporation no longer decreases appreciably when the soil is under the stage 1 evaporation regime. Results suggest that soil water conservation in marginal lands may be accomplished by maintaining moderate amounts of bioenergy grass residue covering the soil. Determining “critical” loads for different residue types is a knowledge gap that merits further research.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136014128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validating coupled flow theory for bare‐soil evaporation under different boundary conditions 不同边界条件下裸土蒸发耦合流动理论的验证
3区 地球科学
Vadose Zone Journal Pub Date : 2023-10-04 DOI: 10.1002/vzj2.20277
Johanna R. Blöcher, Efstathios Diamantopoulos, Wolfgang Durner, Sascha C. Iden
{"title":"Validating coupled flow theory for bare‐soil evaporation under different boundary conditions","authors":"Johanna R. Blöcher, Efstathios Diamantopoulos, Wolfgang Durner, Sascha C. Iden","doi":"10.1002/vzj2.20277","DOIUrl":"https://doi.org/10.1002/vzj2.20277","url":null,"abstract":"Abstract Evaporation from bare soil is an important hydrological process and part of the water and energy balance of terrestrial systems. Modeling bare‐soil evaporation is challenging, mainly due to nonlinear couplings among liquid water, water vapor, and heat fluxes. Model concepts of varying complexity have been proposed for predicting evaporative water and energy fluxes. Our aim was to test a standard model of coupled water, vapor, and heat flow in the soil using data from laboratory evaporation experiments under different boundary conditions. We conducted evaporation experiments with a sand and a silt loam soil and with three different atmospheric boundary conditions: (i) wind, (ii) wind and short‐wave radiation, and (iii) wind and intermittent short‐wave radiation. The packed soil columns were closed at the bottom (no water flux) and instrumented with temperature sensors, tensiometers, and relative humidity probes. We simulated the evaporation experiments with a coupled water, vapor, and heat flow model, which solves the surface energy balance and predicts the evaporation rate. The evaporation dynamics were predicted very well, in particular the onset of stage‐two evaporation and the evaporation rates during the stage. A continuous slow decrease of the measured evaporation rate during stage‐one could not be described with a constant aerodynamic resistance. Adding established soil resistance parametrizations to the model significantly degraded model performance. The use of a boundary‐layer resistance, which takes into account the effect of point sources of moisture, improved the prediction of evaporation rates for the sandy soil, but not for the silt loam.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135591206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining the value of hydropedological information on hydrological modeling at different scales in the Sabie catchment, South Africa 考察南非萨比流域不同尺度水文模型的水文水文信息的价值
3区 地球科学
Vadose Zone Journal Pub Date : 2023-09-26 DOI: 10.1002/vzj2.20280
Edward Smit, George van Zijl, Eddie Riddell, Johan van Tol
{"title":"Examining the value of hydropedological information on hydrological modeling at different scales in the Sabie catchment, South Africa","authors":"Edward Smit, George van Zijl, Eddie Riddell, Johan van Tol","doi":"10.1002/vzj2.20280","DOIUrl":"https://doi.org/10.1002/vzj2.20280","url":null,"abstract":"Abstract Detailed soil information is increasingly sought after for watershed‐scale hydrological modeling to better understand the soil–water interactions at a landscape level. In South Africa, 8% of the surface area is responsible for 50% of the mean annual runoff. Thus, understanding the soil–water dynamics in these catchments remains imperative to future water resource management. In this study, the value of hydropedological information is tested by comparing a detailed hydropedological map based on infield soil information to the best readily available soil information at five different catchment sizes (48, 56, 174, 674, and 2421 km 2 ) using the soil and water assessment tool (SWAT)+ model in the Sabie catchment, South Africa. The aim was to determine the value of hydropedological information at different scales as well as illustrate the value of hydropedology as soft data to improve hydrological process representation. Improved hydropedological information significantly improved long‐term streamflow simulations at all catchment sizes, except for the largest catchment (2421 km 2 ). It is assumed that the resulting improved streamflow simulations are a direct result of the improved hydrological process representation achieved by the hydropedological information. Here, we argue that hydropedological information should form an important soft data tool to better understand and simulate different hydrological processes.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified expression for hydraulic conductivity according to Mualem–van Genuchten to allow proper computations at low‐pressure heads 根据Mualem–van Genuchten修改的导水率表达式,以便在低压水头下进行正确计算
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2023-09-07 DOI: 10.1002/vzj2.20279
Marius Heinen
{"title":"Modified expression for hydraulic conductivity according to Mualem–van Genuchten to allow proper computations at low‐pressure heads","authors":"Marius Heinen","doi":"10.1002/vzj2.20279","DOIUrl":"https://doi.org/10.1002/vzj2.20279","url":null,"abstract":"Water retention and hydraulic conductivity characteristics are key input data in studies on soil water dynamics in the vadose zone. The most well‐known analytical functions to describe these characteristics are those given by Mualem and van Genuchten, where van Genuchten showed that both can be described by a limited set of shared parameters. Analytically, there are no restrictions on the range of pressure heads for which these characteristics can be used. Experience, however, has shown that for certain sets of parameters, the hydraulic conductivity cannot be computed accurately at low‐pressure heads. This is due to the accuracy of (double precision) floating point operations in computer code. It is shown that for low‐pressure heads, the Mualem function approaches a power function. An adapted version of the Mualem–van Genuchten (MvG) expression for the hydraulic conductivity is proposed: between saturation and a soil‐dependent critical pressure head, the classical Mualem expression is valid and below this critical pressure head a power function is used. The power function is defined such that it matches the Mualem value at the critical pressure head. No accuracy problems will occur when using the power function until the result approaches the smallest possible (double precision) floating point value that significantly differs from zero.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48366105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信