Mario Acosta Flores, Eusebio Jiménez López, Marta Lilia Eraña Díaz
{"title":"Obtaining of a Constitutive Models of Laminate Composite Materials","authors":"Mario Acosta Flores, Eusebio Jiménez López, Marta Lilia Eraña Díaz","doi":"10.5772/intechopen.100607","DOIUrl":"https://doi.org/10.5772/intechopen.100607","url":null,"abstract":"The study of the mechanical behavior of composite materials has acquired great importance due to the innumerable number of applications in new technological developments. As a result, many theories and analytical models have been developed with which its mechanical behavior is predicted; these models require knowledge of elastic properties. This work describes a basic theoretical framework, based on linear elasticity theory and classical lamination theory, to generate constitutive models of laminated materials made up of orthotropic layers. Thus, the models of three orthotropic laminated composite materials made up of layers of epoxy resin reinforced with fiberglass were also obtained. Finally, by means of experimental axial load tests, the constants of the orthotropic layers were determined.","PeriodicalId":235269,"journal":{"name":"Elasticity of Materials [Working Title]","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131654170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elements of the Nonlinear Theory of Elasticity Based on Tensor-Nonlinear Equations","authors":"Kirill F. Komkov","doi":"10.5772/intechopen.100906","DOIUrl":"https://doi.org/10.5772/intechopen.100906","url":null,"abstract":"The chapter contains information that forms the basis of a new direction in the nonlinear theory of elasticity. The theory, having adopted the mathematical apparatus obtained in the middle of the last century, after its analysis, is used with significant changes. This concept allows us to more accurately reveal the mechanism of deformation of materials, the elastic nature of which significantly depends on the type of stress state, due to the growth of additional volumetric deformation associated with the accumulation of defects, called dilatation. The work is original — after abandoning the elasticity characteristics in the form of modules - constants, the main role is assigned to material functions, which represent statistical characteristics. Their relation can be considered a coefficient of variation and a parameter of tensor nonlinearity, which makes it possible to represent the deformation in the form of two parts, different in origin.","PeriodicalId":235269,"journal":{"name":"Elasticity of Materials [Working Title]","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128669816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compression and Recovery Functional Application for the Sportswear Fabric","authors":"R. Guru, Rajeev Kumar Varshney, Rohit Kumar","doi":"10.5772/intechopen.101316","DOIUrl":"https://doi.org/10.5772/intechopen.101316","url":null,"abstract":"A sportswear fabric should have good stretch and recovery behaviour. This study facilitates an effective design and development of high-stretch sportswear using different knitted structure. Nine types of knitted fabrics were produced by varying the type of fibre and type of structure. An experiment work is done to study the fabric size, stretch and elastic recovery properties. The statistical analysis showed that type of fibre and type of knitted structure significantly influence the fabric stretch. Plain structure fabric showed higher stretch value than rib and interlock-knitted fabric. The high stitch density caused by reduce stretch value in the course- and wale-wise due to yarn floating rather than overlapping influenced the weight and thickness of knitted fabrics. The elastic recovery analysis indicated that the recovery value of plain-knitted structure with polyester-spandex blend is higher among studied fabrics. However, the recovery value decreased over time in comparison with stretch value.","PeriodicalId":235269,"journal":{"name":"Elasticity of Materials [Working Title]","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124300989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanostructures Failures and Fully Atomistic Molecular Dynamics Simulations","authors":"José Moreira de Sousa","doi":"10.5772/intechopen.100331","DOIUrl":"https://doi.org/10.5772/intechopen.100331","url":null,"abstract":"Nowadays, the concern about the limitations of space and natural resources has driven the motivation for the development of increasingly smaller, more efficient, and energy-saving electromechanical devices. Since the revolution of “microchips”, during the second half of the twentieth century, besides the production of microcomputers, it has been possible to develop new technologies in the areas of mechanization, transportation, telecommunications, among others. However, much room for significant improvements in factors as shorter computational processing time, lower energy consumption in the same kind of work, more efficiency in energy storage, more reliable sensors, and better miniaturization of electronic devices. In particular, nanotechnology based on carbon has received continuous attention in the world’s scientific scenario. The riches found in different physical properties of the nanostructures as, carbon nanotubes (CNTs), graphene, and other exotic allotropic forms deriving from carbon. Thus, through classical molecular dynamics (CMD) methods with the use of reactive interatomic potentials reactive force field (ReaxFF), the scientific research conducted through this chapter aims to study the nanostructural, dynamic and elastic properties of nanostructured systems such as graphene single layer and conventional carbon nanotube (CNTs).","PeriodicalId":235269,"journal":{"name":"Elasticity of Materials [Working Title]","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121598302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of Elastomer Elongation and Output for Dielectric Elastomers","authors":"S. Chiba, M. Waki, S. Zhu, Tonghuan Qu, K. Ohyama","doi":"10.5772/INTECHOPEN.99713","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.99713","url":null,"abstract":"The need for light, high-strength, and artificial muscles is growing rapidly. A well-known type of artificial muscle meeting these requirements is the dielectric elastic (DE) type, which uses electrostatic force between electrodes. In hopes of utilizing, it practically for a variety of purposes, research and development is rapidly progressing all over the world as a technology for practical use. Much of the market demand is dominated by more output-focused applications such as DE power suits, DE motors, DE muscles for robots, and larger DE power systems. To meet these demands, the elasticity of the elastomer is very important. In this paper, we discussed what the important factors are for SS curves, viscoelasticity tests, etc. of the dielectric elastomer materials. Recent attempts have been also made to use new carbon foam materials such as SWCNTs and MWCNTs as electrodes for DEs. These electrodes bring the elastomers to a higher level of performance.","PeriodicalId":235269,"journal":{"name":"Elasticity of Materials [Working Title]","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122656669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}