{"title":"基于张量-非线性方程的非线性弹性理论的基本原理","authors":"Kirill F. Komkov","doi":"10.5772/intechopen.100906","DOIUrl":null,"url":null,"abstract":"The chapter contains information that forms the basis of a new direction in the nonlinear theory of elasticity. The theory, having adopted the mathematical apparatus obtained in the middle of the last century, after its analysis, is used with significant changes. This concept allows us to more accurately reveal the mechanism of deformation of materials, the elastic nature of which significantly depends on the type of stress state, due to the growth of additional volumetric deformation associated with the accumulation of defects, called dilatation. The work is original — after abandoning the elasticity characteristics in the form of modules - constants, the main role is assigned to material functions, which represent statistical characteristics. Their relation can be considered a coefficient of variation and a parameter of tensor nonlinearity, which makes it possible to represent the deformation in the form of two parts, different in origin.","PeriodicalId":235269,"journal":{"name":"Elasticity of Materials [Working Title]","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elements of the Nonlinear Theory of Elasticity Based on Tensor-Nonlinear Equations\",\"authors\":\"Kirill F. Komkov\",\"doi\":\"10.5772/intechopen.100906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter contains information that forms the basis of a new direction in the nonlinear theory of elasticity. The theory, having adopted the mathematical apparatus obtained in the middle of the last century, after its analysis, is used with significant changes. This concept allows us to more accurately reveal the mechanism of deformation of materials, the elastic nature of which significantly depends on the type of stress state, due to the growth of additional volumetric deformation associated with the accumulation of defects, called dilatation. The work is original — after abandoning the elasticity characteristics in the form of modules - constants, the main role is assigned to material functions, which represent statistical characteristics. Their relation can be considered a coefficient of variation and a parameter of tensor nonlinearity, which makes it possible to represent the deformation in the form of two parts, different in origin.\",\"PeriodicalId\":235269,\"journal\":{\"name\":\"Elasticity of Materials [Working Title]\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elasticity of Materials [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.100906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elasticity of Materials [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elements of the Nonlinear Theory of Elasticity Based on Tensor-Nonlinear Equations
The chapter contains information that forms the basis of a new direction in the nonlinear theory of elasticity. The theory, having adopted the mathematical apparatus obtained in the middle of the last century, after its analysis, is used with significant changes. This concept allows us to more accurately reveal the mechanism of deformation of materials, the elastic nature of which significantly depends on the type of stress state, due to the growth of additional volumetric deformation associated with the accumulation of defects, called dilatation. The work is original — after abandoning the elasticity characteristics in the form of modules - constants, the main role is assigned to material functions, which represent statistical characteristics. Their relation can be considered a coefficient of variation and a parameter of tensor nonlinearity, which makes it possible to represent the deformation in the form of two parts, different in origin.