ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems最新文献

筛选
英文 中文
Developing a Smart Façade System Controller for Wind-Induced Vibration Mitigation in Tall Buildings 高层建筑风致振动智能幕墙系统控制器的研制
Khalid M. Abdelaziz, J. Hobeck
{"title":"Developing a Smart Façade System Controller for Wind-Induced Vibration Mitigation in Tall Buildings","authors":"Khalid M. Abdelaziz, J. Hobeck","doi":"10.1115/smasis2019-5674","DOIUrl":"https://doi.org/10.1115/smasis2019-5674","url":null,"abstract":"\u0000 Tall and slender buildings often endure disturbances resulting from winds composed of various mean and fluctuating velocities. These disturbances result in discomfort for the occupants as well as accelerated fatigue life cycles and premature fatigue failures in the building. This work presents the development of a smart morphing façade (Smorphaçade) system that dynamically alters a buildings’ external shape or texture to minimize the effect of wind-induced vibrations on the building. The Smorphacade system is represented in this work by a series of plates that vary their orientation by means of a central controller module. To validate the simulation, a simple NACA0012 airfoil is simulated in a stream of air at a Reynolds number (RE) of 2 million. The pressure and viscous force profiles are captured to plot the variation of the lift force for different angles of attack that are then validated using published experimental airfoil data. After validation, the airfoil is attached to a linear spring-damper combination and is allowed to translate vertically without rotation according to the force profile captured from the surrounding air stream. A PID controller is developed to equilibrate the vertical position of the airfoil by altering its angle of attack. The model and its utility functions are implemented as an OpenFOAM® module (MSLSolid). Thereafter, the model is expanded to handle a planar case of a building floor carrying 4 controllable plates. The forces on the building profile are summed at the centroid of the building and the windward rigid body motion of the floor is estimated by reflecting the horizontal force component on a Finite Element (FE) model of the building. The time series information of the force acting on the building and the resulting oscillations are captured for exhaustive combinations of the plate angles. This data is used to build a lookup table that gives the best plate configuration for a given wind condition. A controller operates in real-time by searching the lookup table using readings of the wind condition. Preliminary results show a 94% reduction in the amplitudes of wind-induced vibrations.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114984216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Miniaturized Broadband Vibration Energy Harvester With Piecewise-Linear Asymmetric Restoring Force 具有分段线性不对称恢复力的小型化宽带振动能量采集器
A. Masuda, F. Zhao
{"title":"Miniaturized Broadband Vibration Energy Harvester With Piecewise-Linear Asymmetric Restoring Force","authors":"A. Masuda, F. Zhao","doi":"10.1115/smasis2019-5616","DOIUrl":"https://doi.org/10.1115/smasis2019-5616","url":null,"abstract":"\u0000 This paper presents a design study of a miniaturized broadband nonlinear vibration energy harvester (VEH) with piecewise-linear restoring force based on a mechanically-sprung resonator with stoppers. It is commonly recognized that a VEH based on a nonlinearly-sprung resonator can show broadband frequency characteristics while keeping its maximum power performance due to its bent resonance peak. The resonator to be investigated in this study consists of a magnet composite as a mass moving through an induction coil, two planar springs, and mechanical stoppers. The magnet composite is comprised of two repelling cylindrical magnets and a steel disk between them, all encapsulated in a thin stainless-steel cylinder. The planar springs with spiral-like shape are respectively connected to the both ends of the magnet composite so that they provide soft linear stiffness in a compact size. The mechanical stoppers installed to constrain the deformation of the spring give the resonator piecewise-linear hardening characteristics which effectively broaden the resonance band. In this study, the prototype VEH developed in the previous study is presented, and the gaps between the springs and stoppers are adjusted so that the resultant piecewise-linear restoring force shows symmetric or asymmetric property with respect to the equilibrium point. Experimental studies and analyses are carried out to examine the performance of the presented VEH in terms of the frequency response. The comparison of three different configurations of the stopper illustrates how the asymmetry in the bilinear restoring force affects the shape of the resonance peak. It is also suggested that the asymmetry may help the VEH operate in broader band by exploiting its ability of tailoring the resonance characteristics, which still needs further investigation.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124410806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Acoustical Behaviour of Buckling Dielectric Elastomer Actuators 屈曲介电弹性体致动器的声学行为
Michael Gareis, J. Maas
{"title":"Acoustical Behaviour of Buckling Dielectric Elastomer Actuators","authors":"Michael Gareis, J. Maas","doi":"10.1115/smasis2019-5747","DOIUrl":"https://doi.org/10.1115/smasis2019-5747","url":null,"abstract":"\u0000 Dielectric elastomers (DE) are regarded as a potential alternative to conventional actuator technologies. They feature low weight, high strains and low material costs. Their scope of application ranges from sensors, energy generators, smart textiles to biomimetic robots and much more. A few concepts of loudspeakers using DE have been demonstrated by the research community. One of the disadvantages of previously concepts was the need for mechanical bias (e.g. by air pressure). This work proposes a new concept of loudspeaker, which does not need prestretch or other means of mechanical bias. Buckling dielectric elastomer transducers (BDET) use the area expansion of actuated DE to buckle up. This mechanism is used to construct a millimeter-scale loudspeaker with good frequency response in the upper frequency range. The concept is implemented using automatically fabricated multi-layer membranes. The multilayer structure allows to generate more force and has higher flexural rigidity than a single-layer setup. Samples with different amount of layers are fabricated and an analytical model is derived. Measurements of the static deflection, the frequency response and the total harmonic distortion validate the model. The small scale of the speaker allows it to be installed in large arrays and thus might offer a hardware platform for high-resolution beam forming or wave field synthesis.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124418033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ultra-Long Nanocomposite Wire Ropes 超长纳米复合钢丝绳
Marco A. Marini, M. Talò, G. Lanzara, W. Lacarbonara
{"title":"Ultra-Long Nanocomposite Wire Ropes","authors":"Marco A. Marini, M. Talò, G. Lanzara, W. Lacarbonara","doi":"10.1115/smasis2019-5688","DOIUrl":"https://doi.org/10.1115/smasis2019-5688","url":null,"abstract":"\u0000 Carbon nanotubes (CNT) represent an effective filler to be incorporated into polymer matrices. Their physical properties allow them to exert a remarkable strengthening effect, while their nano-scale leaves the polymer weight unaltered. Exploiting their high strength-to-weight ratio, CNT/polymer nanocomposites appear to be the ideal materials to be shaped as wires and fibers. In this work, an ad-hoc innovative extrusion process is proposed to fabricate though and ultralong CNT/polymer nanocomposite wires. The process parameters are finely tuned to produce nanocomposite filaments exhibiting optimized mechanical properties. Optical analyses validate the morphological features of the fabricated filaments having an averaged diameter of 350 μm. Monotonic tensile tests are carried out to investigate the mechanical response of wires with CNTs content ranging from 1 wt% to 3 wt%. Young’s modulus and tensile strength registered increments of 47% and 43%, respectively, when comparing the 3 wt% CNT nanocomposite wires with the neat polymer wires. Finally, cyclic tensile tests are employed to investigate the change in damping capacity that accompanies the integration of CNTs into the polymer matrix. Such optimized CNTs nanocomposite wires can be easily integrated into several devices or assembled into ropes and yarns with multifunctional, improved properties.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123102757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Structural Health Monitoring Methodology in Reinforced Concrete Structures Using FBGs and Pattern Recognition Techniques 基于fbg和模式识别技术的钢筋混凝土结构健康监测方法的发展
Alejandra Amaya, J. Alvarez-Montoya, J. Sierra-Pérez
{"title":"Development of a Structural Health Monitoring Methodology in Reinforced Concrete Structures Using FBGs and Pattern Recognition Techniques","authors":"Alejandra Amaya, J. Alvarez-Montoya, J. Sierra-Pérez","doi":"10.1115/smasis2019-5517","DOIUrl":"https://doi.org/10.1115/smasis2019-5517","url":null,"abstract":"\u0000 Structural health monitoring (SHM) is a branch of structural engineering which seeks for the development of monitoring systems that provide relevant information of any alteration that may occur in an engineering structure. This work presents the implementation of an SHM methodology in a prototype structure made of reinforced concrete by using fiber Bragg gratings (FBGs), a type of fiber optic sensor capable of measuring strain and temperature changes due to external stimuli. The SHM system includes an interrogation device and signal processing algorithms which are intended to study the physical variations on the FBGs measurements in order to detect anomalies in the structure promoted by a damage occurrence. The structure prototype is a porticoed structure which contains 48 embedded sensors: 32 of them are destinated for the strain measurement and are located in both columns and beams of the structure, 16 are temperature sensors which have been embedded for thermal compensation. Strain datasets for both pristine and damaged conditions were obtained for the structure while it was excited with a mechanical shaker which induced dynamic loading conditions resembling earthquakes. By using classification algorithms based on pattern recognition, it is intended to process the datasets with the aim of reaching the first level of SHM in the structure (damage detection).","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116866723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Active Thermal Management of FRP Composites via Embedded Vascular Networks 通过嵌入式血管网络的FRP复合材料的主动热管理
J. Cole, I. Bond, A. Lawrie
{"title":"Active Thermal Management of FRP Composites via Embedded Vascular Networks","authors":"J. Cole, I. Bond, A. Lawrie","doi":"10.1115/smasis2019-5555","DOIUrl":"https://doi.org/10.1115/smasis2019-5555","url":null,"abstract":"\u0000 Fibre-reinforced polymer (FRP) composite materials are limited in high temperature applications by the matrix glass transition temperature, Tg. At and above this temperature, significant mechanical performance is lost, and degradation processes accelerated. This research explores the use of internal passages, or vascules, within the laminate to carry a coolant fluid, absorbing heat energy and cooling the material. A custom thermal chamber and four-point flexural test fixture were developed to perform in-situ thermo-mechanical testing. Vascular and non-vascular carbon/epoxy specimens were manufactured, containing arrays of four 1.1 mm diameter vascules. Specimens were exposed to temperatures from ambient to 170 °C (Tg = 200 °C). Flexural modulus varied little with temperature across all tests. Non-vascular specimens at 170 °C showed a reduction in ultimate strength of 21 % compared to under ambient conditions. The presence of vascules caused a small improvement in flexural modulus and strength, due to displacement of a small number of 0° fibre tows further from the neutral axis as a result of the manufacturing process. At 15 L·min−1 coolant flow, vascular specimens showed full retention of strength compared to non-vascular specimens at ambient, demonstrating the potential mechanical performance benefits.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128995608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Probabilistic Health Monitoring System Using Embedded Piezoelectric Patch Sensors 基于嵌入式压电贴片传感器的概率健康监测系统设计
Amin Eshghi, Soobum Lee, H. Jung, Pingfeng Wang
{"title":"Design of a Probabilistic Health Monitoring System Using Embedded Piezoelectric Patch Sensors","authors":"Amin Eshghi, Soobum Lee, H. Jung, Pingfeng Wang","doi":"10.1115/smasis2019-5506","DOIUrl":"https://doi.org/10.1115/smasis2019-5506","url":null,"abstract":"\u0000 This paper proposes a probabilistic model for the placement of sensors that considers uncertain factors in the sensing system to find the best arrangement of sensor locations. Traditional procedures for structural health monitoring (SHM) usually rely on simplified behavior and deterministic factors from structure’s response. Incorporating the sources of uncertainty (e.g., loading condition, material properties, and geometrical parameters) in the design of sensor network will enhance the safety and extend the useful life of the complex mechanical systems. The proposed method is defined in a reliability-based design optimization framework to search for the sufficient number of sensors for failure detection using Genetic Algorithm. The optimal arrangement is found as the one that minimizes the number and size of sensor patches and maximizes the expected probability for failure detection. This design concept involves a new failure diagnosis indicator, named detectability, formulated based on the Mahalanobis Distance (MD). MD distribution is used as a measure of the quality of the obtained sensor configuration suitable for many sensing/actuation SHM processes, while considering the uncertainties such as those from structure properties and operation condition. The MD classifier categorizes large sets of testing data by comparing the distances of the mean with the distribution of available training data sets. Statistical evaluation of failure detectability can be obtained by comparing the distribution of MD for different failure modes. Kriging modeling, used for metamodel-based design optimization, is applied for surrogate modeling of the stochastic performance of system to reduce computational cost. The surrogate model is constructed by correlating the sensor output to the vibration pattern of the structure and sensor variable inputs (e.g., size and location). Direct finite element analysis (FEA) evaluates the sensor output with respect to the input variables. Consequently, the constructed kriging model enables the estimation of sensor output for any arbitrary sensor arrays. As a case study, a rectangular panel with a size of 40 cm × 30 cm is considered that is fastened using eight screw joints. The harmonic vibration force is applied to the center of the plate and its varied vibration pattern is used to detect the joint failure. Eight different combinations of join failure are defined as health statuses (failure modes), and different size and layouts of the piezoelectric sensors are considered to detect the health status. The results verify the capabilities of the new method for failure diagnosis of screw joints in a panel with high sensitivity of fault detection.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123936270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multifunctional Structures for Attitude Control 姿态控制的多功能结构
Vedant, James T. Allison
{"title":"Multifunctional Structures for Attitude Control","authors":"Vedant, James T. Allison","doi":"10.1115/smasis2019-5565","DOIUrl":"https://doi.org/10.1115/smasis2019-5565","url":null,"abstract":"\u0000 The Engineering Systems Design Lab (ESDL) at the University of Illinois introduced Strain-Actuated Solar Arrays (SASAs) as a solution for precise satellite Attitude Control System (ACSs). SASA is designed to provide active mechanical vibration (jitter) cancellation, as well as small slew maneuver capabilities to hold a pose for short time periods. Current SASA implementations utilize piezoelectric distributed actuators to strain deployable structures, and the resulting momentum transfer rotates the spacecraft bus. A core disadvantage, however, is small strain and slew capability. Initial SASA systems could help improve pointing accuracy, but must be coupled with another ACS technology to produce large reorientations. A novel extension of the original SASA system is presented here that overcomes the small-displacement limitation, enabling use of SASA as a sole ACS for some missions, or in conjunction with other ACSs. This extension, known as Multifunctional Structures for Attitude Control (MSAC), can produce arbitrarily-large rotations, and has the potential to scale to large spacecraft. The system utilizes existing flexible deployable structures (such as solar arrays or radiators) as multifunctional devices. This multi-role use of solar panels extends their utility at a low mass penalty, while increasing reliability of the spacecraft ACS.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120909870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Energy Harvesting From the Vibration and Rotation of Host Systems Using Piezoelectric Devices 利用压电装置从主系统的振动和旋转中收集能量
C. Cooley
{"title":"Energy Harvesting From the Vibration and Rotation of Host Systems Using Piezoelectric Devices","authors":"C. Cooley","doi":"10.1115/smasis2019-5629","DOIUrl":"https://doi.org/10.1115/smasis2019-5629","url":null,"abstract":"\u0000 This work analyzes the energy harvested by a piezoelectric vibration energy harvester that is attached to a rotating host system, like an automotive tire, that has superposed translational vibration. The device experiences once-per-revolution dynamic excitation from rotation and, because the host system translates, additional speed-dependent excitation from input vibration. The device consists of a piezoelectric beam with a proof mass that displaces tangentially in operation so that large, troublesome centripetal accelerations can be avoided. The dynamic response and power harvested are determined in closed-form. The speed-dependent properties of the response components are determined. With excitation from rotation and vibration, the device harvests substantially more power than if the system were excited by either rotation or vibration alone. Numerical results are shown for an example device over a wide range of rotation speeds. The device can harvest 185 mW of power at its maximum when the rotation speed is near 1,000 rpm. The device provides more than 30 mW of power for speeds between 817 rpm and 1,195 rpm. Harvesting energy from vibration naturally leads to wider speed bandwidths where large amounts of power are available.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124094040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chord Morphing for Helicopter Rotor Blades 直升机旋翼叶片的弦变形
J. Riemenschneider, Christoph Balzarek, B. G. Wall, Rohin K. Majeti
{"title":"Chord Morphing for Helicopter Rotor Blades","authors":"J. Riemenschneider, Christoph Balzarek, B. G. Wall, Rohin K. Majeti","doi":"10.1115/smasis2019-5625","DOIUrl":"https://doi.org/10.1115/smasis2019-5625","url":null,"abstract":"\u0000 Since helicopter rotors have different demands from different flight stats, the final design is always a compromise between flight stats such as hover and fast forward flight. Two of the design parameters are twist and chord length. This paper is giving some reasoning from rotor simulations on what twist and chord length should look like in order to increase performance in hover or forward flight. The result is, that the inboard chord length should be much larger for hover than for forward flight. This paper is presenting a structural concept, that can enable a helicopter rotor blade to change its chord length.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127662850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信