Virginia journal of science最新文献

筛选
英文 中文
Forest diversity and disturbance: changing influences and the future of Virginia's Forests 森林多样性和干扰:变化的影响和弗吉尼亚森林的未来
Virginia journal of science Pub Date : 2015-12-31 DOI: 10.25778/6GVJ-RY68
Christine J. Small, J. Chamberlain
{"title":"Forest diversity and disturbance: changing influences and the future of Virginia's Forests","authors":"Christine J. Small, J. Chamberlain","doi":"10.25778/6GVJ-RY68","DOIUrl":"https://doi.org/10.25778/6GVJ-RY68","url":null,"abstract":"The Virginia landscape supports a remarkable diversity of forests, from maritime dunes, swamp forests, and pine savannas of the Atlantic coastal plain, to post-agricultural pine-hardwood forests of the piedmont, to mixed oak, mixed-mesophytic, northern hardwood, and high elevation conifer forests in Appalachian mountain provinces. Virginia’s forests also have been profoundly shaped by disturbance. Chestnut blight, hemlock woolly adelgid, emerald ash borer, and other pests have caused declines or functional extirpation of foundation species. Invasive plants like multiflora rose, Oriental bittersweet, and Japanese stiltgrass threaten both disturbed and intact forests. Oaks and other fire-dependent species have declined with prolonged fire suppression, encouraging compositional shifts to maple, beech, and other mesophytic species. Agriculture has left lasting impacts on soil and microsite variations, and atmospheric nitrogen deposition has led to soil acidification, nutrient loss, and diversity declines. And, future changes associated with climate warming are expected to influence species distributions and habitat quality, particularly for hemlock-northern hardwood and spruce-fir forests. These and other disturbances will continue to shape Virginia’s forests, influencing species interactions, successional trajectories, and susceptibility to invasive plants and secondary stressors, and initiating broader impacts on forest diversity, ecosystem processes, and habitat resources for associated species and neighboring ecosystems.","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78304635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Virginia’s Land Mammals: Past and Present, With Some Thoughts About Their Possible Future 弗吉尼亚的陆地哺乳动物:过去和现在,以及对它们可能的未来的一些思考
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/FCFH-4Y76
J. F. Pagels, N. Moncrief
{"title":"Virginia’s Land Mammals: Past and Present, With Some Thoughts About Their Possible Future","authors":"J. F. Pagels, N. Moncrief","doi":"10.25778/FCFH-4Y76","DOIUrl":"https://doi.org/10.25778/FCFH-4Y76","url":null,"abstract":"Mammals encountered today in Virginia’s forests and fields include native and nonnative species, feral populations, and free-ranging pets. We examine factors that have influenced Virginia’s terrestrial mammal fauna since the arrival of European colonists in the 1600s and some of the factors that are shaping the fauna today. We look in depth at changes since Handley and Patton’s (1947) first complete monograph on Virginia mammals and augment Linzey’s (1998) book, The Mammals of Virginia. We include current nomenclature, baseline information, and references to comprehensive literature. We discuss some of the current and developing anthropogenic factors that have impacted, or that likely will impact, our native land mammals as well as factors that bode well for many species, especially in areas of conservation of habitat. BACKGROUND Approximately 115 species of mammals live in or frequent Virginia; of these, about 28 are marine mammals (e.g., porpoises, whales, seals, and manatees) that are known from its shores, bays, and tidal rivers (Handley and Patton 1947; Linzey 1998). Including extirpated species, 77 species of native land mammals (those species that occurred here or reached here without purposeful or accidental introduction by humans) have been recorded since Europeans arrived in Virginia (Table 1). The diversity of Virginia’s land mammals reflects a complex history of evolution, adaptation, and migration that has occurred over millions of years on a varied land surface and under changing climatic conditions (Woodward and Hoffman 1991). With elevations ranging from sea level to more than 1,500 m, the east-west orientation of the long axis of the state intersects five physiographic regions (Fig. 1), which results in a wide variety of habitats. As detailed by Handley (1992), most (42 of 74 extant species) Virginia land mammals have boreal (northern) affinities and the rest have austral (southern) affinities (Table 1). As a general rule, boreal species either occur statewide or in the west. By contrast, austral species tend to occur only in the east or south if their distributions are not statewide. As a result of its latitudinal position, Virginia is near the northern edge of the distributions of about a dozen austral species and the southern edge of * Corresponding author -nancy.moncrief@vmnh.virginia.gov Virginia Journal of Science, Vol. 66, No. 3, 2015 http://digitalcommons.odu.edu/vjs/vol66/iss3 172 VIRGINIA JOURNAL OF SCIENCE T A B L E 1 . L an d m am m al s n at iv e to V ir g in ia , i nc lu d in g s p ec ie s p es en t a t t h e ti m e o f E u ro p ea n c o n ta ct a n d th o se th at h av e n at u ra ll y co lo n iz ed V ir g in ia s in ce t ha t ti m e. C o m m o n o r v er n ac u la r n am e (a s su g g es te d b y W il so n a n d R ee d er 2 0 5 ) is i n d ic at ed f o r ea ch sp ec ie s, a lo n g w it h c u rr en t c la ss if ic at io n c u rr en t d is tr ib u io n , d is tr ib u ti o n al a ff in it y ( d is tr ib . a ff in it y","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73101043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Viewing the status of Virginia’s environment through the lens of freshwater fishes 通过淡水鱼的镜头观察弗吉尼亚的环境状况
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/YYY2-G953
P. Angermeier, M. Pinder
{"title":"Viewing the status of Virginia’s environment through the lens of freshwater fishes","authors":"P. Angermeier, M. Pinder","doi":"10.25778/YYY2-G953","DOIUrl":"https://doi.org/10.25778/YYY2-G953","url":null,"abstract":"We summarize a range of topics related to the status of Virginia’s freshwater fishes, their reflection of environmental quality, and their contribution to human wellbeing. Since 1994 the list of extant Virginia fishes has lengthened from 210 species to 227 species, mostly due to taxonomic reorganizations. Virginia’s list of Species of Greatest Conservation Need currently contains 96 fish species, predominated by darters (32 species) and minnows (28 species). Increasing trends in species rarity and threats to fishes suggest that Virginia’s aquatic environment is becoming less hospitable for fishes. Prevailing anthropogenic threats to fishes include agriculture, urban development, mineral extraction, forestry, and power generation; emerging threats include introduction of nonnative species and climate change. Agency assessments of Virginia’s streams, rivers, and lakes indicate that over 40% of them are impaired and that dozens of these waterbodies have fishes that, if consumed by people, contain harmful levels of mercury and polychlorinated biphenyls. Multiple state agencies are responsible for managing Virginia’s freshwaters and fishes to achieve objectives related to recreation, conservation, and environmental health. We close with a discussion of the challenges and opportunities associated with conserving Virginia’s diverse fish fauna and identify several research, management, and outreach actions that may enhance conservation effectiveness. INTRODUCTION Freshwater fishes represent a substantial component of Virginia’s rich natural heritage and are tightly interwoven into our economic, environmental, and cultural fabrics. With over 200 native species, Virginia’s fish fauna far exceeds the average diversity among other states in the United States. One reason for this remarkable diversity is that the state is uniquely situated at the distributional crossroads of many southern, northern, eastern and western fish species. The importance of fishes to * Corresponding Author: Paul L. Angermeier Virginia Journal of Science, Vol. 66, No. 3, 2015 http://digitalcommons.odu.edu/vjs/vol66/iss3 148 VIRGINIA JOURNAL OF SCIENCE Virginians goes back centuries to connect with Native Americans and European colonists (McPhee 2002) but still holds true today, albeit in different ways. Whereas most early Virginians were connected to fishes primarily as a major source of food, most Virginians today are not. Instead, our main uses of freshwater fishes are related to recreation (e.g., sportfishing) and environmental monitoring. Of course, fishes are also an important source of natural beauty and knowledge for those who take the time to study them. In this paper, we focus on the insights that fishes offer regarding the condition of our precious water resources. Fishes are excellent environmental monitors because they reflect conditions in the water bodies where they live; those conditions are strongly affected by how people use water and land nearby. Water bodies integra","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85333885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Virginia Air Quality: Trends, Exposure, and Respiratory Health Impacts 弗吉尼亚空气质量:趋势、暴露和呼吸健康影响
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/ZB5N-GK17
J. Blando, M. N. Nguyen, Manasi Sheth-Chandra, M. Akpinar-Elci
{"title":"Virginia Air Quality: Trends, Exposure, and Respiratory Health Impacts","authors":"J. Blando, M. N. Nguyen, Manasi Sheth-Chandra, M. Akpinar-Elci","doi":"10.25778/ZB5N-GK17","DOIUrl":"https://doi.org/10.25778/ZB5N-GK17","url":null,"abstract":"Air quality is an important determinant of public health and quality of life. A secondary data analysis was carried out to investigate trends and air quality in Virginia. The analysis included an evaluation of two major air pollution source categories, emission of criteria and hazardous air pollutants, ambient concentrations of criteria pollutants, ozone standard violations and associated meteorology, and hospital admissions for asthma and chronic obstructive pulmonary disease in Virginia. Comparisons were also made to national trends and statistics. Data was gathered from many open reputable on-line sources available through various state and federal agencies. Virginia routinely meets 5 of the 6 criteria air pollutant ambient standards. Ozone does continue to represent a challenge for Virginia, as it does for many other states. Potential focus on further production and consumption of renewable energy, improvement in fuel efficiency among SUV’s and light trucks, reduction of the metals content in fuels burned by electric utilities, utilization of emissions inspections for automobiles, utilization of vapor recovery systems at gas stations, and continued emphasis on ozone precursors all have the potential to further improve air quality within Virginia. This is important because the very young and the elderly are particularly vulnerable to the adverse effects of poor air quality. INTRODUCTION Poor air quality has long been associated with adverse human and ecological health impacts. For example, poor air quality led King Edward I in 1273 to prohibit the burning of coal due to noxious air emissions (Beck 2007). Although we have made significant progress in controlling air pollution in many developed countries today, concern still exists regarding the impact of air quality on health. In the 1980’s and 1990’s, several epidemiologic research studies showed that in the United States both particulate matter (Wilson and Spengler 1996) and ozone (Lippmann 1989) were associated with adverse human health effects at levels typical of that time. Additional * Corresponding author: jblando@odu.edu Virginia Journal of Science, Vol. 66, No. 3, 2015 http://digitalcommons.odu.edu/vjs/vol66/iss3 372 VIRGINIA JOURNAL OF SCIENCE studies were conducted and this body of research is now reflected in the United States Environmental Protection Agency’s (USEPA) Criteria Documents required under Title I of the Clean Air Act (USEPA 2014a; USEPA 2010). These Criteria Documents form the basis for the compliance levels set under the National Ambient Air Quality Standards (NAAQS). Today in the Unites States, the USEPA regulates ambient air quality through six NAAQS. The Criteria Air Pollutants regulated under Title I of the Clean Air Act are particulate matter (PM), carbon monoxide (CO), ozone (O3), oxides of sulfur (SOx), oxides of nitrogen (NOx), and lead (Pb). The particulate matter standards include both particles under 10 microns in aerodynamic diameter (PM10) and particles un","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84642669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Status of Plants in Virginia 弗吉尼亚州植物的现状
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/GC3E-YA06
M. H. Renfroe
{"title":"Status of Plants in Virginia","authors":"M. H. Renfroe","doi":"10.25778/GC3E-YA06","DOIUrl":"https://doi.org/10.25778/GC3E-YA06","url":null,"abstract":"OVERVIEW OF BOTANICAL DIVERSITY Virginia possesses a unique and varied assemblage of plant life. There are 3,164 species, subspecies and varieties of plants in Virginia (Weakley et al. 2012). As classified by the Virginia Departmentof Conservation and Recreation’s Division of Natural Heritage (DCR-DNH), they form some 94 ecological groups and 317 community types across five distinct physiographic provinces: Coastal Plain, Piedmont, Blue Ridge, Ridge and Valley, and Appalachian Plateau. The state extends 469 miles from east to west and 201 miles north to south at the widest points, enclosing 42,326 square miles of territory. This diverse range of environmental conditions supports the wide diversity of plant life found within the state. Virginia is on the northern boundary of many southern plant species and on the southern boundary of many northern plant species. This range overlap combined with seashore to mountain variation leads to one of the richer diversities of plant life within the continental United States. Virginia was the source of some of the earlier plant collections by European botanists (Berkeley and Berkeley 1963).Europeans started observing and documenting Virginia’s flora as early as the 1500s (Hugo and Ware 2012). Over the next two centuries, there were various explorations and reports by laypersons and scientifically trained individuals. In the eighteenth century, there were significant contributions to the documentation and descriptions of plants in Virginia. In 1739 J. F. Gronovius published John Clayton’s work titled Flora Virginica describing some 500 or so plant species (Hugo and Ware 2012). John Mitchell, James Greenway, and prominently, John Bartram wrote extensively about plants of Virginia. Later, such botanists as Andre Michaux, Asa Gray, and John Torrey published work that included plants of Virginia (Hugo and Ware 2012). Work toward a new Flora of Virginia began in earnest in 1926 when the Virginia Academy of Science established a flora committee through the leadership of A.B. Massey of Virginia Polytechnic Institute (Hugo and Ware 2012). Through Massey’s vision and the efforts of many subsequent scientists, a new Flora of Virginia was finally published in 2012 documenting 3,164 plant species, subspecies, and varieties in 189 families in the commonwealth of Virginia (Weakley et al. 2012). The public charge to inventory and protect this wealth of plant biodiversity is given to the Office of Plant Protection within the Virginia Department of Agriculture and Consumer Services, which under the Virginia Endangered Plant and Insect Species Act has responsibility to list and protect Virginia’s endangered and threatened plant species. There were 26 species listed in 2013, whereas there were 17 species listed under the federal Endangered Species Act of 1973 (Townsend 2014). The Virginia Endangered Plant and Insect Species Act also contains provisions for the recovery of endangered and threatened species in Virginia. The VDCR, ","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85518905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sea Level Rise in Virginia – Causes, Effects and Response 弗吉尼亚海平面上升——原因、影响和反应
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/8W61-QE76
T. Ezer, L. Atkinson
{"title":"Sea Level Rise in Virginia – Causes, Effects and Response","authors":"T. Ezer, L. Atkinson","doi":"10.25778/8W61-QE76","DOIUrl":"https://doi.org/10.25778/8W61-QE76","url":null,"abstract":"Sea level rise (SLR) along Virginia’s coasts and around the Chesapeake Bay as measured by tide gauges is analyzed and discussed. It is shown that the SLR rates vary between one location to another and in most locations the rates increase over time (i.e., SLR is accelerating). The latest science of SLR is reviewed and the causes of the high SLR rates in Virginia are discussed. The impacts of land subsidence and ocean currents (changes in the Gulf Stream in particular) on sea level are especially notable and important for predicting future SLR in Virginia. The consequences of SLR on increased duration and severity of floods are demonstrated and potential responses are discussed. INTRODUCTION One of the environmental consequences of climate change that have been the most visible in Virginia is sea level rise (SLR). While sea level along the coasts of Virginia is slowly rising, the impacts of waves and storm surges increase as waters are pushed farther into previously unaffected coastal areas and low-lying streets. Both natural features such as marshes and barrier islands and also the built features such as docks, shipyards, tunnels, homes and hotels constructed along the shoreline are all affected. People living on the coast do not always recognize sea level rise itself, but they clearly see that there is more frequent flooding and that areas that were not flooded in the past are now becoming new flood-prone areas (Atkinson et al. 2013, Mitchell et al. 2013, Ezer and Atkinson 2014, Sweet and Park 2014). The relative SLR rate (i.e., local water level relative to land) on Virginia’s coasts is one of the highest of all U.S. coasts and the rate appears to be accelerating (Boon 2012, Ezer and Corlett 2012, Ezer 2013, Sallenger et al. 2012, Kopp 2013). SLR rates from tide gauges in Virginia over the past 10-30 years are ~4-6 mm/year, which are higher than the global mean SLR rate of ~1.7 mm/year over the past century as seen from tide gauges and even higher than the ~3.2 mm/year over the past 20 years as seen from satellite altimeter data (Church and White 2011, Ezer 2013). Note that SLR of 3 mm/yr is equivalent to about 1 foot/century. Relative SLR is primarily the result of 1 Corresponding author: tezer@odu.edu, latkinso@odu.edu 356 VIRGINIA JOURNAL OF SCIENCE three processes: 1. global SLR due to warming ocean temperatures and melting land ice, 2. local land subsidence (sinking) and 3. ocean dynamics. The impact of land subsidence and ocean dynamics is especially evident in Virginia. The Virginia coast is experiencing subsidence due to human activities such as groundwater extraction and historic geological processes (Boon et al. 2010, Eggleston and Pope 2013). Changes in the flow of offshore currents and the Gulf Stream in particular can result in water level anomalies and flooding (Sweet et al. 2009, Ezer and Atkinson 2014). Since much of Virginia’s coastal areas are flat, small amounts of SLR can have dramatic impactsincreased flooding and coastal er","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85514304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Amphibian and Small Mammal Assemblages in a Northern Virginia Forest Before and After Defoliation by Gypsy Moths (Lymantria dispar) 北弗吉尼亚森林中吉普赛飞蛾(Lymantria dispar)落叶前后的两栖动物和小型哺乳动物群落
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/FAHY-HP91
J. Mitchell
{"title":"Amphibian and Small Mammal Assemblages in a Northern Virginia Forest Before and After Defoliation by Gypsy Moths (Lymantria dispar)","authors":"J. Mitchell","doi":"10.25778/FAHY-HP91","DOIUrl":"https://doi.org/10.25778/FAHY-HP91","url":null,"abstract":"The introduced European gypsy moth (Lymantria dispar) caused substantial defoliation and mortality of oak trees along the North Fork of Quantico Creek in Prince William Forest Park, Prince William County, Virginia, U.S.A., in 1989 and the early 1990s. Results of a drift fence/pitfall study conducted in 1988 were compared to those obtained from the same technique in the same areas in 1993 to elucidate whether the amphibian and small mammal assemblages had changed over time. Number of Lithobates sylvaticus increased significantly in 1993, but the numbers of Lithobates clamitans and Plethodon cinereus were significantly higher in 1988. Total numbers of amphibians caught in both years was similar. Two species of salamanders caught in 1988 were not caught in 1993, and one salamander and one frog caught in 1993 were absent in 1988. Total numbers of small mammals caught in 1993 were significantly greater than in 1988. The increase was due to greater numbers of Blarina brevicauda and Sorex longirostris. The hypothesis that no significant differences in amphibian and small mammal species richness and relative abundance before and after gypsy moth defoliation hypothesis was not supported by the results of this study.","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88818458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Comparison of Survey Methods for Documenting Presence of Myotis leibii (Eastern Small-Footed Bats) at Roosting Areas in Western Virginia 西维吉尼亚州东部小脚蝙蝠栖息区调查方法的比较研究
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/ZYFX-3321
J. Huth, A. Silvis, Paul R. Moosman, W. Ford, S. Sweeten
{"title":"A Comparison of Survey Methods for Documenting Presence of Myotis leibii (Eastern Small-Footed Bats) at Roosting Areas in Western Virginia","authors":"J. Huth, A. Silvis, Paul R. Moosman, W. Ford, S. Sweeten","doi":"10.25778/ZYFX-3321","DOIUrl":"https://doi.org/10.25778/ZYFX-3321","url":null,"abstract":"Many aspects of foraging and roosting habitat of Myotis leibii (Eastern Small-Footed Bat), an emergent rock roosting-obligate, are poorly described. Previous comparisons of effectiveness of acoustic sampling and mist-net captures have not included Eastern Small-Footed Bat. Habitat requirements of this species differ from congeners in the region, and it is unclear whether survey protocols developed for other species are applicable. Using data from three overlapping studies at two sampling sites in western Virginia’s central Appalachian Mountains, detection probabilities were examined for three survey methods (acoustic surveys with automated identification of calls, visual searches of rock crevices, and mist-netting) for use in the development of “best practices” for future surveys and monitoring. Observer effects were investigated using an expanded version of visual search data. Results suggested that acoustic surveys with automated call identification are not effective for documenting presence of Eastern Small-Footed Bats on talus slopes (basal detection rate of 0%) even when the species is known to be present. The broadband, high frequency echolocation calls emitted by Eastern Small-Footed Bat may be prone to attenuation by virtue of their high frequencies, and these factors, along with signal reflection, lower echolocation rates or possible misidentification to other bat species over talus slopes may all have contributed to poor acoustic survey success. Visual searches and mist-netting of emergent rock had basal detection probabilities of 91% and 75%, respectively. Success of visual searches varied among observers, but * Corresponding author: jhuth@VT.edu Virginia Journal of Science, Vol. 66, No. 4, 2015 http://digitalcommons.odu.edu/vjs/vol66/iss4 414 VIRGINIA JOURNAL OF SCIENCE detection probability improved with practice. Additionally, visual searches were considerably more economical than mist-netting. INTRODUCTION There has been an estimated mortality of more than 6 million bats in the genus Myotis in White-Nose Syndrome (WNS) affected areas (Blehert et al. 2009; Ford et al. 2011; Francl et al. 2011; Minnis and Lindner 2013; Puechmaille et al. 2011). This disease has continued to spread across the Northeast into the Appalachians, Midwest and mid-South (Francl et al. 2012), and now is present throughout much of the eastern United States and Canada (U.S. Fish & Wildlife Service 2016a). Undoubtedly, this increased geographic footprint has led to higher overall mortality than original estimates. Biologists have long relied on capture methods such as mist-netting near roosts or water sources and along flyways to document presence of bats (Kunz et al. 2009). Declines in bat populations due to WNS have made previous standard capture methods largely ineffective for some bat species of conservation concern in WNS-impacted areas (Coleman et al. 2014; Ford et al. 2011). As early as 1994, long before the WNS emergence, the U.S. Geological Survey (USGS","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86718934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Life-history Aspects of Moxostoma cervinum (Blacktip Jumprock) in the Roanoke River, Virginia 维吉尼亚州罗亚诺克河中颈鼻虫的生活史研究
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/B21F-BS16
D. Thompson, J. Bentley, Steven L. Powers
{"title":"Life-history Aspects of Moxostoma cervinum (Blacktip Jumprock) in the Roanoke River, Virginia","authors":"D. Thompson, J. Bentley, Steven L. Powers","doi":"10.25778/B21F-BS16","DOIUrl":"https://doi.org/10.25778/B21F-BS16","url":null,"abstract":"Life-history aspects of Moxostoma cervinum (Blacktip Jumprock) were identified using specimens from recent collections and the Roanoke College Ichthyological Collection. The largest specimen examined was a female 161.27 mm SL and 66 months of age. Spawning appears to occur in May, with a mean of 2477.6 oocytes (SD = 2825.3) up to 1.54 mm diameter in gravid females. Sexual maturity appears to occur by 1-2 years of age in males and 2-3 years of age in females. Male to female ratio was not significantly different from 1:1. Chironomidae composed the bulk of the diet; while detritus, Trichoptera, Ephemeroptera, and Acari were important food items in multiple months. Weight of gut contents and proportion of Chironomidae as food items increased with size of specimens examined. INTRODUCTION Moxostoma cervinum (Cope) (Blacktip Jumprock) inhabits upland streams in the James, New, Roanoke, Tar, and Neuse river systems of Virginia and North Carolina (Jenkins and Burkhead 1994). Jenkins (1970), Buth (1978), and Smith (1992) all placed the species in the genus Scartomyzon with other small suckers inhabiting faster, shallower waters. However, most recent analyses embed the species within the genus Moxostoma (Harris et al. 2002, Doosey et al. 2010, Chen and Mayden 2012) with larger suckers often found in very different habitats. This phylogenetic placement means that understanding the biology and life-history of M. cervinum is important in identifying derived and ancestral character states, thus helping to interpret the substantial variation in the biology and life-history of the Moxostoma. Despite this importance, our understanding of this species’ life history is restricted to three paragraphs in the species account in Freshwater Fishes of Virginia, which gives limited details on aspects of diet, size and age at maturity, and timing of spawning (Jenkins and Burkhead 1994). The objective of this study is to document more detailed life-history aspects of M. cervinum from specimens collected throughout the year employing methods utilized in similar studies. MATERIALS AND METHODS Moxostoma cervinum were collected from the Roanoke River near Salem, VA (Roanoke County) between September 2010 and August 2011 by sampling daylight 1 Corresponding author: powers@roanoke.edu Virginia Journal of Science, Vol. 66, No. 4, 2015 http://digitalcommons.odu.edu/vjs/vol66/iss4 392 VIRGINIA JOURNAL OF SCIENCE hours near the end of each month using a Smith-Root LR-24 electrofisher and a 3.3-m x 1.3-m seine with 9.5-mm mesh. We supplemented our collections with specimens from the Roanoke College Ichthyological Collection (RC) for months when we collected few specimens (n < 15). Specimens were collected following Nickum et al. (2004) protocols, fixed in 10% formalin, rinsed with water and then stored in 45% isopropyl alcohol. A total of 154 specimens were examined in this study. Details on specimens examined (collection sites, collection dates, numbers of specimens taken, collector f","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74634050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pesticide Analysis in Vegetables Using QuEChERS Extraction and Colorimetric Detection 用QuEChERS萃取比色法分析蔬菜中的农药
Virginia journal of science Pub Date : 2015-01-01 DOI: 10.25778/8RZD-1Z63
D. Neufeld, N. Åkerson, D. Barahona
{"title":"Pesticide Analysis in Vegetables Using QuEChERS Extraction and Colorimetric Detection","authors":"D. Neufeld, N. Åkerson, D. Barahona","doi":"10.25778/8RZD-1Z63","DOIUrl":"https://doi.org/10.25778/8RZD-1Z63","url":null,"abstract":"A novel combination of extraction and detection methods is demonstrated for pesticide residue analysis in vegetable samples. Acetylcholinesterase (AChE) inhibition was used as a simple colorimetric test for organophosphates/carbamates (OP/C), and was tested with extracts from the widely-used QuEChERS extraction method. In the absence of pesticide, diluted (50% with water) acetonitrile did not inhibit enzyme activity, demonstrating the compatibility of this extraction solvent with the AChE inhibition test. QuEChERS extraction of chlorpyrifos-spiked tomato, spinach and lettuce samples indicated a high sensitivity to OP/C, with AChE inhibition occurring in the ppb range. The applicability of this method combination was tested by screening tomatoes from 18 different sources, including private gardens, farmer’s market venders, and local supermarkets. Tomatoes from one private garden, three “certified naturally grown” farmer’s market venders and two “organic” supermarket source had AChE inhibition significantly above nominally pesticide-free controls, suggesting the presence of OP/C residue. These residues were likely below levels of health concern, as indicated by lack of complete AChE inhibition, and the absence of inhibition upon sample dilution. This study demonstrates that the combination of QuEChERS extraction and AChE-inhibition detection provides a relatively simple and inexpensive alternative for detection of OP/C in vegetable samples.","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91060128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信