From Euclidean to Hilbert Spaces最新文献

筛选
英文 中文
The Transpose (or Dual)of a Linear Operator 线性算子的转置(或对偶)
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.app2
{"title":"The Transpose (or Dual)of a Linear Operator","authors":"","doi":"10.1002/9781119851318.app2","DOIUrl":"https://doi.org/10.1002/9781119851318.app2","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"686 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129069424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Geometric Structure of Hilbert Spaces 希尔伯特空间的几何结构
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.ch5
{"title":"The Geometric Structure of Hilbert Spaces","authors":"","doi":"10.1002/9781119851318.ch5","DOIUrl":"https://doi.org/10.1002/9781119851318.ch5","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134208642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform, Strong and Weak Convergence 一致、强收敛和弱收敛
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.app3
{"title":"Uniform, Strong and Weak Convergence","authors":"","doi":"10.1002/9781119851318.app3","DOIUrl":"https://doi.org/10.1002/9781119851318.app3","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127635626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Index 指数
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.index
{"title":"Index","authors":"","doi":"10.1002/9781119851318.index","DOIUrl":"https://doi.org/10.1002/9781119851318.index","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123208667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Banach Spaces and Hilbert Spaces 巴拿赫空间和希尔伯特空间
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.ch4
F. Narcowich
{"title":"Banach Spaces and Hilbert Spaces","authors":"F. Narcowich","doi":"10.1002/9781119851318.ch4","DOIUrl":"https://doi.org/10.1002/9781119851318.ch4","url":null,"abstract":"A sequence {vj} is said to be Cauchy if for each > 0, there exists a natural number N such that ‖vj−vk‖ < for all j, k ≥ N . Every convergent sequence is Cauchy, but there are many examples of normed linear spaces V for which there exist non-convergent Cauchy sequences. One such example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . ) converges to √ 2 which is not a rational number. We say a normed linear space is complete if every Cauchy sequence is convergent in the space. The real numbers are an example of a complete normed linear space. We say that a normed linear space is a Banach space if it is complete. We call a complete inner product space a Hilbert space. Consider the following examples: 1. Every finite dimensional normed linear space is a Banach space. Likewise, every finite dimensional inner product space is a Hilbert space.","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134236496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inner Product Spaces (Pre‐Hilbert) 内积空间(Pre - Hilbert)
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.ch1
{"title":"Inner Product Spaces (Pre‐Hilbert)","authors":"","doi":"10.1002/9781119851318.ch1","DOIUrl":"https://doi.org/10.1002/9781119851318.ch1","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122125906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quotient Space 商空间
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.app1
{"title":"Quotient Space","authors":"","doi":"10.1002/9781119851318.app1","DOIUrl":"https://doi.org/10.1002/9781119851318.app1","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"145 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122685853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lebesgue's Measure and Integration Theory 勒贝格的测量与整合理论
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.ch3
{"title":"Lebesgue's Measure and Integration Theory","authors":"","doi":"10.1002/9781119851318.ch3","DOIUrl":"https://doi.org/10.1002/9781119851318.ch3","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124980870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Other titles from in Mathematics and Statistics 《数学与统计学》中的其他标题
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.oth
{"title":"Other titles from in Mathematics and Statistics","authors":"","doi":"10.1002/9781119851318.oth","DOIUrl":"https://doi.org/10.1002/9781119851318.oth","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127610185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Discrete Fourier Transform and its Applications to Signal and Image Processing 离散傅里叶变换及其在信号和图像处理中的应用
From Euclidean to Hilbert Spaces Pub Date : 2021-08-12 DOI: 10.1002/9781119851318.ch2
{"title":"The Discrete Fourier Transform and its Applications to Signal and Image Processing","authors":"","doi":"10.1002/9781119851318.ch2","DOIUrl":"https://doi.org/10.1002/9781119851318.ch2","url":null,"abstract":"","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133891676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信