Banach Spaces and Hilbert Spaces

F. Narcowich
{"title":"Banach Spaces and Hilbert Spaces","authors":"F. Narcowich","doi":"10.1002/9781119851318.ch4","DOIUrl":null,"url":null,"abstract":"A sequence {vj} is said to be Cauchy if for each > 0, there exists a natural number N such that ‖vj−vk‖ < for all j, k ≥ N . Every convergent sequence is Cauchy, but there are many examples of normed linear spaces V for which there exist non-convergent Cauchy sequences. One such example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . ) converges to √ 2 which is not a rational number. We say a normed linear space is complete if every Cauchy sequence is convergent in the space. The real numbers are an example of a complete normed linear space. We say that a normed linear space is a Banach space if it is complete. We call a complete inner product space a Hilbert space. Consider the following examples: 1. Every finite dimensional normed linear space is a Banach space. Likewise, every finite dimensional inner product space is a Hilbert space.","PeriodicalId":233638,"journal":{"name":"From Euclidean to Hilbert Spaces","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"From Euclidean to Hilbert Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119851318.ch4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A sequence {vj} is said to be Cauchy if for each > 0, there exists a natural number N such that ‖vj−vk‖ < for all j, k ≥ N . Every convergent sequence is Cauchy, but there are many examples of normed linear spaces V for which there exist non-convergent Cauchy sequences. One such example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . ) converges to √ 2 which is not a rational number. We say a normed linear space is complete if every Cauchy sequence is convergent in the space. The real numbers are an example of a complete normed linear space. We say that a normed linear space is a Banach space if it is complete. We call a complete inner product space a Hilbert space. Consider the following examples: 1. Every finite dimensional normed linear space is a Banach space. Likewise, every finite dimensional inner product space is a Hilbert space.
巴拿赫空间和希尔伯特空间
如果对于每个> 0,存在一个自然数N使得‖vj−vk‖<对于所有j, k≥N,则称序列{vj}是柯西的。每一个收敛序列都是柯西的,但是在赋范线性空间V中存在不收敛柯西序列的例子很多。一个这样的例子是有理数q的集合。数列(1.4,1.41,1.414,…)收敛于√2,它不是一个有理数。如果一个赋范线性空间中的每一个柯西序列都是收敛的,我们就说这个空间是完备的。实数是完全赋范线性空间的一个例子。如果赋范线性空间是完备的,我们就说它是巴拿赫空间。我们称完全内积空间为希尔伯特空间。考虑下面的例子:每一个有限维赋范线性空间都是一个巴拿赫空间。同样,每一个有限维的内积空间都是希尔伯特空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信