Traffic最新文献

筛选
英文 中文
N-BAR and F-BAR proteins-endophilin-A3 and PSTPIP1-control clathrin-independent endocytosis of L1CAM. N-BAR和F-BAR蛋白-内啡肽a3和pstpip1 -控制L1CAM的网格蛋白独立内吞作用。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-04-01 DOI: 10.1111/tra.12883
Camille Lemaigre, Apolline Ceuppens, Cesar Augusto Valades-Cruz, Benjamin Ledoux, Bastien Vanbeneden, Mujtaba Hassan, Fredrik R Zetterberg, Ulf J Nilsson, Ludger Johannes, Christian Wunder, Henri-François Renard, Pierre Morsomme
{"title":"N-BAR and F-BAR proteins-endophilin-A3 and PSTPIP1-control clathrin-independent endocytosis of L1CAM.","authors":"Camille Lemaigre,&nbsp;Apolline Ceuppens,&nbsp;Cesar Augusto Valades-Cruz,&nbsp;Benjamin Ledoux,&nbsp;Bastien Vanbeneden,&nbsp;Mujtaba Hassan,&nbsp;Fredrik R Zetterberg,&nbsp;Ulf J Nilsson,&nbsp;Ludger Johannes,&nbsp;Christian Wunder,&nbsp;Henri-François Renard,&nbsp;Pierre Morsomme","doi":"10.1111/tra.12883","DOIUrl":"https://doi.org/10.1111/tra.12883","url":null,"abstract":"<p><p>Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 4","pages":"190-212"},"PeriodicalIF":4.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9196613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Golgi screen identifies the RhoGEF Solo as a novel regulator of RhoB and endocytic transport. 高尔基筛检发现RhoGEF Solo是RhoB和内吞运输的一种新型调节剂。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-04-01 DOI: 10.1111/tra.12880
Cristiana Lungu, Florian Meyer, Marcel Hörning, Jasmin Steudle, Anja Braun, Bettina Noll, David Benz, Felix Fränkle, Simone Schmid, Stephan A Eisler, Monilola A Olayioye
{"title":"Golgi screen identifies the RhoGEF Solo as a novel regulator of RhoB and endocytic transport.","authors":"Cristiana Lungu,&nbsp;Florian Meyer,&nbsp;Marcel Hörning,&nbsp;Jasmin Steudle,&nbsp;Anja Braun,&nbsp;Bettina Noll,&nbsp;David Benz,&nbsp;Felix Fränkle,&nbsp;Simone Schmid,&nbsp;Stephan A Eisler,&nbsp;Monilola A Olayioye","doi":"10.1111/tra.12880","DOIUrl":"https://doi.org/10.1111/tra.12880","url":null,"abstract":"<p><p>The control of intracellular membrane trafficking by Rho GTPases is central to cellular homeostasis. How specific guanine nucleotide exchange factors and GTPase-activating proteins locally balance GTPase activation in this process is nevertheless largely unclear. By performing a microscopy-based RNAi screen, we here identify the RhoGEF protein Solo as a functional counterplayer of DLC3, a RhoGAP protein with established roles in membrane trafficking. Biochemical, imaging and optogenetics assays further uncover Solo as a novel regulator of endosomal RhoB. Remarkably, we find that Solo and DLC3 control not only the activity, but also total protein levels of RhoB in an antagonistic manner. Together, the results of our study uncover the first functionally connected RhoGAP-RhoGEF pair at endomembranes, placing Solo and DLC3 at the core of endocytic trafficking.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 4","pages":"162-176"},"PeriodicalIF":4.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9201495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Molecular mechanisms of PI4K regulation and their involvement in viral replication. PI4K调控的分子机制及其在病毒复制中的作用。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-03-01 DOI: 10.1111/tra.12841
Jacob A McPhail, John E Burke
{"title":"Molecular mechanisms of PI4K regulation and their involvement in viral replication.","authors":"Jacob A McPhail,&nbsp;John E Burke","doi":"10.1111/tra.12841","DOIUrl":"https://doi.org/10.1111/tra.12841","url":null,"abstract":"Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4‐kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4‐phosphate (PI4P)‐enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein‐binding partners and post‐translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 3","pages":"131-145"},"PeriodicalIF":4.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9081024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Getting on the right track: Interactions between viruses and the cytoskeletal motor proteins. 走上正轨:病毒和细胞骨架运动蛋白之间的相互作用。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-03-01 DOI: 10.1111/tra.12835
Clàudia Río-Bergé, Yingying Cong, Fulvio Reggiori
{"title":"Getting on the right track: Interactions between viruses and the cytoskeletal motor proteins.","authors":"Clàudia Río-Bergé,&nbsp;Yingying Cong,&nbsp;Fulvio Reggiori","doi":"10.1111/tra.12835","DOIUrl":"https://doi.org/10.1111/tra.12835","url":null,"abstract":"<p><p>The cytoskeleton is an essential component of the cell and it is involved in multiple physiological functions, including intracellular organization and transport. It is composed of three main families of proteinaceous filaments; microtubules, actin filaments and intermediate filaments and their accessory proteins. Motor proteins, which comprise the dynein, kinesin and myosin superfamilies, are a remarkable group of accessory proteins that mainly mediate the intracellular transport of cargoes along with the cytoskeleton. Like other cellular structures and pathways, viruses can exploit the cytoskeleton to promote different steps of their life cycle through associations with motor proteins. The complexity of the cytoskeleton and the differences among viruses, however, has led to a wide diversity of interactions, which in most cases remain poorly understood. Unveiling the details of these interactions is necessary not only for a better comprehension of specific infections, but may also reveal new potential drug targets to fight dreadful diseases such as rabies disease and acquired immunodeficiency syndrome (AIDS). In this review, we describe a few examples of the mechanisms that some human viruses, that is, rabies virus, adenovirus, herpes simplex virus, human immunodeficiency virus, influenza A virus and papillomavirus, have developed to hijack dyneins, kinesins and myosins.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 3","pages":"114-130"},"PeriodicalIF":4.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9446993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A TRAFFIC themed series - Host membrane trafficking subversion by pathogens. 以 "病原体颠覆宿主膜贩运 "为主题的 TRAFFIC 系列。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-03-01 DOI: 10.1111/tra.12882
Eric Chevet, Maria Antonietta De Matteis, Eeva-Liisa Eskelinen, Hesso Farhan
{"title":"A TRAFFIC themed series - Host membrane trafficking subversion by pathogens.","authors":"Eric Chevet, Maria Antonietta De Matteis, Eeva-Liisa Eskelinen, Hesso Farhan","doi":"10.1111/tra.12882","DOIUrl":"10.1111/tra.12882","url":null,"abstract":"","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 3","pages":"112-113"},"PeriodicalIF":4.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10861016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Henipaviruses and lyssaviruses target nucleolar treacle protein and regulate ribosomal RNA synthesis. Henipaviruses 和 lyssaviruses 靶向核小体treacle蛋白并调节核糖体RNA的合成。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-03-01 Epub Date: 2022-12-30 DOI: 10.1111/tra.12877
Stephen M Rawlinson, Tianyue Zhao, Katie Ardipradja, Yilin Zhang, Patrick F Veugelers, Jennifer A Harper, Cassandra T David, Vinod Sundaramoorthy, Gregory W Moseley
{"title":"Henipaviruses and lyssaviruses target nucleolar treacle protein and regulate ribosomal RNA synthesis.","authors":"Stephen M Rawlinson, Tianyue Zhao, Katie Ardipradja, Yilin Zhang, Patrick F Veugelers, Jennifer A Harper, Cassandra T David, Vinod Sundaramoorthy, Gregory W Moseley","doi":"10.1111/tra.12877","DOIUrl":"10.1111/tra.12877","url":null,"abstract":"<p><p>The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 3","pages":"146-157"},"PeriodicalIF":4.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9082087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of cholesterol transport impairs Cav-1 trafficking and small extracellular vesicles secretion, promoting amphisome formation in melanoma cells. 抑制胆固醇转运损害Cav-1运输和细胞外小泡分泌,促进黑色素瘤细胞中两性体的形成。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-02-01 DOI: 10.1111/tra.12878
Daniela Peruzzu, Zaira Boussadia, Federica Fratini, Francesca Spadaro, Lucia Bertuccini, Massimo Sanchez, Maria Carollo, Paola Matarrese, Mario Falchi, Francesca Iosi, Carla Raggi, Isabella Parolini, Alessandra Carè, Massimo Sargiacomo, Maria Cristina Gagliardi, Katia Fecchi
{"title":"Inhibition of cholesterol transport impairs Cav-1 trafficking and small extracellular vesicles secretion, promoting amphisome formation in melanoma cells.","authors":"Daniela Peruzzu,&nbsp;Zaira Boussadia,&nbsp;Federica Fratini,&nbsp;Francesca Spadaro,&nbsp;Lucia Bertuccini,&nbsp;Massimo Sanchez,&nbsp;Maria Carollo,&nbsp;Paola Matarrese,&nbsp;Mario Falchi,&nbsp;Francesca Iosi,&nbsp;Carla Raggi,&nbsp;Isabella Parolini,&nbsp;Alessandra Carè,&nbsp;Massimo Sargiacomo,&nbsp;Maria Cristina Gagliardi,&nbsp;Katia Fecchi","doi":"10.1111/tra.12878","DOIUrl":"https://doi.org/10.1111/tra.12878","url":null,"abstract":"<p><p>Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical-physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 2","pages":"76-94"},"PeriodicalIF":4.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10612069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles. 急性 COG 复合物失活揭示了它对高尔基体的直接影响,并阐明了高尔基体内循环囊泡的性质。
IF 3.6 3区 生物学
Traffic Pub Date : 2023-02-01 Epub Date: 2022-12-15 DOI: 10.1111/tra.12876
Farhana Taher Sumya, Irina D Pokrovskaya, Zinia D'Souza, Vladimir V Lupashin
{"title":"Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles.","authors":"Farhana Taher Sumya, Irina D Pokrovskaya, Zinia D'Souza, Vladimir V Lupashin","doi":"10.1111/tra.12876","DOIUrl":"10.1111/tra.12876","url":null,"abstract":"<p><p>Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 2","pages":"52-75"},"PeriodicalIF":3.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/99/0a/TRA-24-52.PMC9969905.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9366380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic depletion of sphingolipids inhibits agonist-induced endocytosis of the serotonin1A receptor. 鞘脂代谢耗竭抑制激动剂诱导的5 -羟色胺1a受体的内吞作用。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-02-01 DOI: 10.1111/tra.12879
Abhishek Kumar, Parijat Sarkar, Amitabha Chattopadhyay
{"title":"Metabolic depletion of sphingolipids inhibits agonist-induced endocytosis of the serotonin<sub>1A</sub> receptor.","authors":"Abhishek Kumar,&nbsp;Parijat Sarkar,&nbsp;Amitabha Chattopadhyay","doi":"10.1111/tra.12879","DOIUrl":"https://doi.org/10.1111/tra.12879","url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) are vital cellular signaling machinery and currently represent ~40% drug targets. Endocytosis of GPCRs is an important process that allows stringent spatiotemporal control over receptor population on the cell surface. Although the role of proteins in GPCR endocytosis is well addressed, the contribution of membrane lipids in this process is rather unexplored. Sphingolipids are essential functional lipids in higher eukaryotes and are implicated in several neurological functions. To understand the role of sphingolipids in GPCR endocytosis, we subjected cells expressing human serotonin<sub>1A</sub> receptors (an important neurotransmitter GPCR involved in cognitive and behavioral functions) to metabolic sphingolipid depletion using fumonisin B<sub>1</sub> , an inhibitor of sphingolipid biosynthetic pathway. Our results, using flow cytometric analysis and confocal microscopic imaging, show that sphingolipid depletion inhibits agonist-induced endocytosis of the serotonin<sub>1A</sub> receptor in a concentration-dependent manner, which was restored when sphingolipid levels were replenished. We further show that there was no change in the internalization of transferrin, a marker for clathrin-mediated endocytosis, under sphingolipid-depleted condition, highlighting the specific requirement of sphingolipids for endocytosis of serotonin<sub>1A</sub> receptors. Our results reveal the regulatory role of sphingolipids in GPCR endocytosis and highlight the importance of neurotransmitter receptor trafficking in health and disease.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 2","pages":"95-107"},"PeriodicalIF":4.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10588330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
GTP-stimulated membrane fission by the N-BAR protein AMPH-1. N-BAR蛋白AMPH-1的GTP刺激膜裂变。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-01-01 Epub Date: 2022-12-13 DOI: 10.1111/tra.12875
Lauren Kustigian, Xue Gong, Wei Gai, Jirapat Thongchol, Junjie Zhang, Jason Puchalla, Chavela M Carr, Hays S Rye
{"title":"GTP-stimulated membrane fission by the N-BAR protein AMPH-1.","authors":"Lauren Kustigian, Xue Gong, Wei Gai, Jirapat Thongchol, Junjie Zhang, Jason Puchalla, Chavela M Carr, Hays S Rye","doi":"10.1111/tra.12875","DOIUrl":"10.1111/tra.12875","url":null,"abstract":"<p><p>Membrane-enclosed transport carriers sort biological molecules between stations in the cell in a dynamic process that is fundamental to the physiology of eukaryotic organisms. While much is known about the formation and release of carriers from specific intracellular membranes, the mechanism of carrier formation from the recycling endosome, a compartment central to cellular signaling, remains to be resolved. In Caenorhabditis elegans, formation of transport carriers from the recycling endosome requires the dynamin-like, Eps15-homology domain (EHD) protein, RME-1, functioning with the Bin/Amphiphysin/Rvs (N-BAR) domain protein, AMPH-1. Here we show, using a free-solution single-particle technique known as burst analysis spectroscopy (BAS), that AMPH-1 alone creates small, tubular-vesicular products from large, unilamellar vesicles by membrane fission. Membrane fission requires the amphipathic H0 helix of AMPH-1 and is slowed in the presence of RME-1. Unexpectedly, AMPH-1-induced membrane fission is stimulated in the presence of GTP. Furthermore, the GTP-stimulated membrane fission activity seen for AMPH-1 is recapitulated by the heterodimeric N-BAR amphiphysin protein from yeast, Rvs161/167p, strongly suggesting that GTP-stimulated membrane fission is a general property of this important class of N-BAR proteins.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 1","pages":"34-47"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9081605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信