{"title":"Recent Advances in TiO2 Nanotube-Based Materials for Photocatalytic Applications Designed by Anodic Oxidation","authors":"P. H. Le, Jihperng Leu","doi":"10.5772/INTECHOPEN.77063","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77063","url":null,"abstract":"This book chapter reports some spectacular and interesting 1D nanostructures of TiO2, which are grown by the anodic oxidation. Under suitable conditions, conventional onestep anodic oxidation is available to grow TiO2 nanotube arrays (TNAs) and TiO2 nanowires/nanotubes; meanwhile, two-step anodic oxidation allows fabricating some novel TNAs with spectacular morphologies such as highly ordered TNAs, bamboo-type TNAs, and lotus root-shaped TNAs. The formation mechanisms of these nanostructures during the anodic oxidation processes are elusive via studying effects of several key parameters such as oxidizing voltage, processing time, and electrolytes. In addition, the photocatalytic activity of the TNA-based nanomaterials is characterized by the degradation of pharmaceutical model, methylene blue, or the photoelectrochemical effect.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"56 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75098531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TiO2-Low Band Gap Semiconductor Heterostructures for Water Treatment Using Sunlight-Driven Photocatalysis","authors":"R. D. Angel, J. Durán-Álvarez, R. Zanella","doi":"10.5772/INTECHOPEN.76501","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76501","url":null,"abstract":"Heterogeneous photocatalysis is a promising advanced oxidation process for water purification, given its potential to fully oxidize organic pollutants and to inactivate microorganisms. Due to its versatility and high performance in a broad range of conditions, titanium dioxide (TiO2)-based photocatalysis has been systematically used at laboratory scale to treat water of different quality. Even though TiO2 is an exceptional photocatalyst, its broad band gap value (3.2 eV) makes necessary the use of UV light to achieve the photoactivation. This results in the underutilization of the material in sunlight-driven photocatalysis schemes. In order to overcome this handicap, the synthesis of heterostructures using low band gap semiconductors coupled with TiO2 has brought exceptional materials for visible light-driven photocatalysis. In this chapter, the fundamentals of the synthesis and photoactivation of TiO2-low band gap semiconductor heterostructures are explored. The mechanisms leading to the increase of the photocatalytic activity of such heterostructures are described. A summary of the available data on the photocatalytic performance of TiO2-based heterostructures is presented, in terms of degradation of organic pollutants in water using visible light and sunlight. A comparison of the depuration performance of powdered and thin film heterostructures is given at the end of the chapter.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81392893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erick Barrios Serrano, M. Oropeza-Guzmán, E. López-Maldonado
{"title":"Innovation in the Electrophoretic Deposition of TiO2 Using Different Stabilizing Agents and Zeta Potential","authors":"Erick Barrios Serrano, M. Oropeza-Guzmán, E. López-Maldonado","doi":"10.5772/INTECHOPEN.73210","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.73210","url":null,"abstract":"Surface engineering is gaining increasing relevance in various industrial sectors and in research, and in this sense, zeta potential measurements, being a physicochemical parameter of interface, are key to linking the functionality of a coating with its application environment. In this work, different stabilizing agents with different chemical structure and electrical charge were used to improve the stability of the TiO 2 particles. The influence of the electrophoretic deposition (EPD) parameters (potential and deposition time) and the concentration of chitosan and TiO 2 in suspension were studied to find the best deposition performance on the titanium substrate. The composition and structure of the coatings were evaluated by infrared spectroscopies (FT-IR) and scanning electron microscopy (SEM). It was observed that the TiO 2 particles were dispersed in the chitosan matrix through simultaneous deposition. Corrosion resistance was evaluated by electrochemical polarization curves, indicating a higher corrosion resistance of TiO 2 and TiO 2 -chitosan coatings compared to the pure titanium substrate in a solution of sulfuric acid.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90597585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controlling the Microstructure and Properties of Titanium Dioxide for Efficient Solar Cells","authors":"A. Shalan, A. Elseman, M. Rashad","doi":"10.5772/INTECHOPEN.72494","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.72494","url":null,"abstract":"In this chapter, we review the controlling of the microstructures, the properties, and the different methods to obtain titanium dioxide and the application of these materials on solar cells. We will concentrate on the application of efficient solar cells including dyesensitized solar cells (DSSCs). In the first section, we provide a background on energy, including its sources—photovoltaics and titanium dioxide—and the advantages of their application in solar cells. The second section outlines the different methods to obtain TiO2 nanoparticles. The shapes of titanium dioxide are explored in the third section. In the fourth section, we discuss the use and effect of the titanium dioxide in the efficient dye-sensitized solar cells, and the last section is a summary of the current state of the art and perspectives of titanium dioxide for efficient solar cells.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88579354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Mydin, R. Hazan, Mustafa FadzilFaridWajidi, S. Sreekantan
{"title":"Titanium Dioxide Nanotube Arrays for Biomedical Implant Materials and Nanomedicine Applications","authors":"R. Mydin, R. Hazan, Mustafa FadzilFaridWajidi, S. Sreekantan","doi":"10.5772/INTECHOPEN.73060","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.73060","url":null,"abstract":"Nanotechnology has become a research hotspot to explore functional nanodevices and design materials compatible with nanoscale topography. Recently, titanium dioxide nanotube arrays (TNA) have garnered considerable interest as biomedical implant materials and nanomedicine applications (such as nanotherapeutics, nanodiagnostics and nanobiosensors). In bio-implants studies, the properties of TNA nanostructures could modulate diverse cellular processes, such as cell adhesion, migration, proliferation, and differentiation. Furthermore, this unique structure of TNA provides larger surface area and energy to regulate positive cellular interactions toward the mechanosensitivity activities. As for an advanced medical application, the TNA—biomolecular interactions knowledge are critical for further characterization of nanomaterial particularly in nanotherapeutic manipulation. Knowledge of these aspects will create opportunities for better understanding which may help researchers to develop better nanomaterial products to be used in medicine and health-line services.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88177727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Scarpelli, T. F. Mastropietro, T. Poerio, N. Godbert
{"title":"Mesoporous TiO2 Thin Films: State of the Art","authors":"F. Scarpelli, T. F. Mastropietro, T. Poerio, N. Godbert","doi":"10.5772/INTECHOPEN.74244","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74244","url":null,"abstract":"Mesoporous TiO2 thin films (MTTFs), thanks to their particularly high surface area, controlled porosity, high flexibility in composition, and surface design, are promising candidates in different application fields such as sensors, self-cleaning coatings, lithium-ion batteries (LIBs), photocatalysis, and new-generation solar cells. This chapter is focused on the synthetic and post-synthesis aspects that can affect the TiO2 mesoporous structure and consequently the MTTF properties. In particular, after a brief summary of TiO2 properties, all experimental conditions to prepare MTTFs are reviewed as well as the main characterization techniques employed to study their physicochemical and photocatalytic properties. An overview of the main applications of MTTFs is also proposed, mainly focused on the use of MTTFs in sensors and LIBs.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82370577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Nyamukamba, O. Okoh, H. Mungondori, Raymond Tichaona Taziwa, Simcelile Zinya
{"title":"Synthetic Methods for Titanium Dioxide Nanoparticles: A Review","authors":"P. Nyamukamba, O. Okoh, H. Mungondori, Raymond Tichaona Taziwa, Simcelile Zinya","doi":"10.5772/INTECHOPEN.75425","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75425","url":null,"abstract":"Titanium dioxide (TiO 2 ) semiconductor nanoparticles are one kind of important and promising photocatalysts in photocatalysis because of their unique optical and electronic properties. Their properties, which are determined by the preparation method, are very crucial in photocatalysis. In this chapter, an overview was carried out on the different methods that are used or have been used to prepare titanium dioxide nanoparticles. There are various methods that can be used to synthesize TiO 2 and the most commonly used methods include sol-gel process, chemical vapor deposition (CVD) and hydrother- mal method among others. This review will focus on selected preparation methods of titanium dioxide photocatalyst.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80599796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications","authors":"Ramsha Khan, Sofia Javed, M. Islam","doi":"10.5772/INTECHOPEN.74525","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74525","url":null,"abstract":"This chapter covers different routes of preparation of hierarchical nanostructures (HNS) of titanium dioxide. Keeping the interest in developing modern and sustainable meth ods of materials chemistry, this chapter focuses on synthesis routes for TiO 2 HNSs reported by researchers from all over the world. The chapter includes the details of chemical reactions taking place during the synthesis and the effects of various process parameters like: type of surfactants, organic/inorganic titanium salts, temperature and pressure on products. The obtained TiO 2 HNSs from different synthesis routes are sub - sequently compared in terms of their morphology, crystallite size, surface area, particle size and phase. The merits and demerits of all synthesis techniques are also added for comprehensive information. At the end, various applications of HNSs are discussed and their performance is analyzed with respect to the morphologies obtained from different synthesis techniques. of and morphologies","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"144 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77591560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel TiO2 Photocatalyst Using Nonaqueous Solvent- Controlled Sol-Gel Route","authors":"I. Singh, B. Birajdar","doi":"10.5772/INTECHOPEN.74568","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74568","url":null,"abstract":"Synthesis of metal oxide nanoparticles with tailored properties is of great interest because of their potential in environmental, sensor, biomedical and energy applications. Specifically, TiO2 gets special attention because of its high stability, biocompatibility, tunable band gap and surface properties. Aqueous sol-gel routes for the synthesis of TiO2 nanoparticles are well established but suffer from little control over morphology and reproducibility. Nonaqueous solvent controlled sol-gel routes are good alternative to aqueous routes for the synthesis of highly crystalline TiO2 nanoparticles with high purity and controlled doping of large size metallic ions. Present chapter describes the successful doping of large sized Zr and Na metal ions at Ti site and their influence on photo catalytic activity of TiO2. The higher photo catalytic activity (even better than commercially available Degussa P25) of metal doped TiO2 nanopowder is attributed to large surface area and reduced electron-hole recombination rate.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91249018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}