THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY最新文献

筛选
英文 中文
Echolocating Daubenton's bats call louder, but show no spectral jamming avoidance in response to bands of masking noise during a landing task. 回声定位道本顿的蝙蝠叫声更大,但在着陆任务中,对掩蔽噪声的波段没有表现出频谱干扰避免。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-09 DOI: 10.1242/jeb.243917
M. B. Pedersen, Astrid Særmark Uebel, K. Beedholm, Ilias Foskolos, Laura Stidsholt, P. Madsen
{"title":"Echolocating Daubenton's bats call louder, but show no spectral jamming avoidance in response to bands of masking noise during a landing task.","authors":"M. B. Pedersen, Astrid Særmark Uebel, K. Beedholm, Ilias Foskolos, Laura Stidsholt, P. Madsen","doi":"10.1242/jeb.243917","DOIUrl":"https://doi.org/10.1242/jeb.243917","url":null,"abstract":"Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. Like for electrical fish that display clear spectral jamming avoidance responses (JAR), some studies have reported that bats mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratios (ENR). Here we test the hypothesis that FM bats employ a spectral JAR in response to six masking noise-bands ranging from 15-90kHz, by measuring the -3dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared to silent controls (all P>0.05, 60.73±0.96 kHz) (mean±s.e.m.), and -3dB endpoints decreased in noise irrespective of treatment-type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent ranging from 0.05 [0.04-0.06 mean±95% CI] dB/dB noise for the most narrowband (15-30 kHz) to 0.17 [0.16-0.18] dB/dB noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth dependent Lombard response.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77034338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Breathing versus feeding in the Pacific hagfish. 太平洋盲鳗的呼吸与进食。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-09 DOI: 10.1242/jeb.243989
Junho Eom, H. Lauridsen, C. Wood
{"title":"Breathing versus feeding in the Pacific hagfish.","authors":"Junho Eom, H. Lauridsen, C. Wood","doi":"10.1242/jeb.243989","DOIUrl":"https://doi.org/10.1242/jeb.243989","url":null,"abstract":"Hagfish represent the oldest extant connection to the ancestral vertebrates, but their physiology is not well understood. Using behavioural (video), physiological (respirometry, flow measurements), classical morphological (dissection, silicone injection) and modern imaging approaches (micro-MRI, DICE micro-CT) we examined the interface between feeding and the unique breathing mechanism (nostril, high frequency velum, low frequency gill pouches (24) and pharyngo-cutaneous duct,PCD) in the Pacific hagfish, Eptatretus stoutii. A video tour via micro-MRI is presented through the breathing and feeding passages. We have reconciled earlier disagreement as to the position of the velum chamber, which powers inhalation through the nostril, placing it downstream of the merging point of food and water passages, such that the oronasal septum terminates at the anterior end of the velum chamber. When feeding occurs by engulfment of large chunks by the dental plates, food movement through the chamber may transiently interfere with breathing. Swallowing is accelerated by peristaltic body undulation involving the ventral musculature, and is complete within 5 sec. After a large meal (anchovy, 20% body mass), hagfish remain motionless, defecating bones and scales at 1.7 days and an intestinal peritrophic membrane at 5 days. O2 consumption rate approximately doubles within 1 h after feeding, remaining elevated through 12-24 h. This is achieved by combinations of elevated O2 utilization and ventilatory flow, the latter caused by varying increases in velar frequency and stroke volume. Additional imaging casts light on the reasons for the trend for greater O2 utilization by more posterior pouches and PCD in fasted hagfish.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88092535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The mechanics of acoustic signal evolution in field crickets. 蟋蟀声信号演化的机制。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-08 DOI: 10.1242/jeb.243374
Vamsy Godthi, R. Balakrishnan, R. Pratap
{"title":"The mechanics of acoustic signal evolution in field crickets.","authors":"Vamsy Godthi, R. Balakrishnan, R. Pratap","doi":"10.1242/jeb.243374","DOIUrl":"https://doi.org/10.1242/jeb.243374","url":null,"abstract":"Field crickets (Family Gryllidae, Subfamily Gryllinae) typically produce tonal calls with carrier frequencies in the range 3-8 kHz. In this study, we explored the use of a finite element model (FEM) of the stridulatory apparatus of a field cricket, Gryllus bimaculatus, based on experimental measurements of resonator geometry and mechanical properties, to predict the measured call carrier frequencies of eight other field cricket species, ranging between 3 and 7 kHz. The model allowed accurate predictions of carrier frequencies for all eight species to within a few hundred hertz from morphological measurements of their resonators. We then used the model to explore the plausible evolutionary design space for field cricket call carrier frequency along the axes of resonator size and thickness, and mapped the locations of the nine experimentally measured species in this design space. Although the nine species spanned the evolutionarily conserved spectrum of carrier frequency and body size in field crickets, they were clustered in a small region of the available design space. We then explored the reasons for this apparent evolutionary constraint on field cricket carrier frequencies at both the lower and higher limit. We found that body size and sound radiation efficiency were the main constraints at the lower limits, whereas the energetics of stridulation using the clockwork mechanism may pose a constraint at higher frequencies.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72655544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Physiological mechanisms of stress-induced evolution. 应激诱导进化的生理机制。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-08 DOI: 10.1242/jeb.243264
Elizabeth A Mojica, D. Kültz
{"title":"Physiological mechanisms of stress-induced evolution.","authors":"Elizabeth A Mojica, D. Kültz","doi":"10.1242/jeb.243264","DOIUrl":"https://doi.org/10.1242/jeb.243264","url":null,"abstract":"Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86567564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Stride frequency or length? A phylogenetic approach to understand how animals regulate locomotor speed. 步幅的频率还是长度?一种了解动物如何调节运动速度的系统发育方法。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-08 DOI: 10.1242/jeb.243231
M. Granatosky, E. McElroy
{"title":"Stride frequency or length? A phylogenetic approach to understand how animals regulate locomotor speed.","authors":"M. Granatosky, E. McElroy","doi":"10.1242/jeb.243231","DOIUrl":"https://doi.org/10.1242/jeb.243231","url":null,"abstract":"Speed regulation in animals involves stride frequency and stride length. While the relationship between these variables has been well documented, it remains unresolved whether animals primarily modify stride frequency or stride length to increase speed. In this study, we explored the interrelationships between these three variables across a sample of 103 tetrapods and assessed whether speed regulation strategy is influenced by mechanical, allometric, phylogenetic or ecological factors. We observed that crouched terrestrial species tend to regulate speed through stride frequency. Such a strategy is energetically costly, but results in greater locomotor maneuverability and greater stability. In contrast, regulating speed through stride length is closely tied to larger arboreal animals with relatively extended limbs. Such movements reduce substrate oscillations on thin arboreal supports and/or helps to reduce swing phase costs. The slope of speed on frequency is lower in small crouched animals than in large-bodied erect species. As a result, substantially more rapid limb movements are matched with only small speed increases in crouched, small-bodied animals. Furthermore, the slope of speed on stride length was inversely proportional to body mass. As such, small changes in stride length can result in relatively rapid speed increases for small-bodied species. These results are somewhat counterintuitive, in that larger species, which have longer limbs and take longer strides, do not appear to gain as much speed increase out of lengthening their stride. Conversely, smaller species that cycle their limbs rapidly do not gain as much speed out of increasing stride frequency as do larger species.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89495369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Epigenomics as a paradigm to understand the nuances of phenotypes. 表观基因组学作为理解表型细微差别的范例。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-08 DOI: 10.1242/jeb.243411
Cornelia Fanter, Carla B. Madelaire, D. Genereux, F. van Breukelen, D. Levesque, Allyson Hindle
{"title":"Epigenomics as a paradigm to understand the nuances of phenotypes.","authors":"Cornelia Fanter, Carla B. Madelaire, D. Genereux, F. van Breukelen, D. Levesque, Allyson Hindle","doi":"10.1242/jeb.243411","DOIUrl":"https://doi.org/10.1242/jeb.243411","url":null,"abstract":"Quantifying the relative importance of genomic and epigenomic modulators of phenotype is a focal challenge in comparative physiology, but progress is constrained by availability of data and analytic methods. Previous studies have linked physiological features to coding DNA sequence, regulatory DNA sequence, and epigenetic state, but few have disentangled their relative contributions or unambiguously distinguished causative effects ('drivers') from correlations. Progress has been limited by several factors, including the classical approach of treating continuous and fluid phenotypes as discrete and static across time and environment, and difficulty in considering the full diversity of mechanisms that can modulate phenotype, such as gene accessibility, transcription, mRNA processing and translation. We argue that attention to phenotype nuance, progressing to association with epigenetic marks and then causal analyses of the epigenetic mechanism, will enable clearer evaluation of the evolutionary path. This would underlie an essential paradigm shift, and power the search for links between genomic and epigenomic features and physiology. Here, we review the growing knowledge base of gene-regulatory mechanisms and describe their links to phenotype, proposing strategies to address widely recognized challenges.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88070657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Scaling of fibre area and fibre glycogen concentration in the hindlimb musculature of monitor lizards: implications for locomotor performance with increasing body size. 巨蜥后肢肌肉纤维面积和纤维糖原浓度的变化:体型增大对运动表现的影响。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-08 DOI: 10.1242/jeb.243380
Robert L. Cieri, T. Dick, Jeremy S. Morris, C. Clemente
{"title":"Scaling of fibre area and fibre glycogen concentration in the hindlimb musculature of monitor lizards: implications for locomotor performance with increasing body size.","authors":"Robert L. Cieri, T. Dick, Jeremy S. Morris, C. Clemente","doi":"10.1242/jeb.243380","DOIUrl":"https://doi.org/10.1242/jeb.243380","url":null,"abstract":"A considerable biomechanical challenge faces larger terrestrial animals as the demands of body support scale with body mass (Mb), while muscle force capacity is proportional to muscle cross-sectional area, which scales with Mb2/3. How muscles adjust to this challenge might be best understood by examining varanids, which vary by five orders of magnitude in size without substantial changes in posture or body proportions. Muscle mass, fascicle length and physiological cross-sectional area all scale with positive allometry, but it remains unclear, however, how muscles become larger in this clade. Do larger varanids have more muscle fibres, or does individual fibre cross-sectional area (fCSA) increase? It is also unknown if larger animals compensate by increasing the proportion of fast-twitch (higher glycogen concentration) fibres, which can produce higher force per unit area than slow-twitch fibres. We investigated muscle fibre area and glycogen concentration in hindlimb muscles from varanids ranging from 105 g to 40,000 g. We found that fCSA increased with modest positive scaling against body mass (Mb0.197) among all our samples, and ∝Mb0.278 among a subset of our data consisting of never-frozen samples only. The proportion of low-glycogen fibres decreased significantly in some muscles but not others. We compared our results with the scaling of fCSA in different groups. Considering species means, fCSA scaled more steeply in invertebrates (∝Mb0.575), fish (∝Mb0.347) and other reptiles (∝Mb0.308) compared with varanids (∝Mb0.267), which had a slightly higher scaling exponent than birds (∝Mb0.134) and mammals (∝Mb0.122). This suggests that, while fCSA generally increases with body size, the extent of this scaling is taxon specific, and may relate to broad differences in locomotor function, metabolism and habitat between different clades.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81495404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Complications with body-size correction in comparative biology: possible solutions and an appeal for new approaches. 比较生物学中体型校正的并发症:可能的解决方案和对新方法的呼吁。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-08 DOI: 10.1242/jeb.243313
D. S. Glazier
{"title":"Complications with body-size correction in comparative biology: possible solutions and an appeal for new approaches.","authors":"D. S. Glazier","doi":"10.1242/jeb.243313","DOIUrl":"https://doi.org/10.1242/jeb.243313","url":null,"abstract":"The magnitude of many kinds of biological traits relates strongly to body size. Therefore, a first step in comparative studies frequently involves correcting for effects of body size on the variation of a phenotypic trait, so that the effects of other biological and ecological factors can be clearly distinguished. However, commonly used traditional methods for making these body-size adjustments ignore or do not completely separate the causal interactive effects of body size and other factors on trait variation. Various intrinsic and extrinsic factors may affect not only the variation of a trait, but also its covariation with body size, thus making it difficult to remove completely the effect of body size in comparative studies. These complications are illustrated by several examples of how body size interacts with diverse developmental, physiological, behavioral and ecological factors to affect variation in metabolic rate both within and across species. Such causal interactions are revealed by significant effects of these factors on the body-mass scaling slope of metabolic rate. I discuss five possible major kinds of methods for removing body-size effects that attempt to overcome these complications, at least in part, but I hope that my Review will encourage the development of other, hopefully better methods for doing so.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86749920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Predicting selection-response gradients of heat tolerance in a widespread reef-building coral. 预测广泛造礁珊瑚耐热性的选择响应梯度。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-08 DOI: 10.1242/jeb.243344
Ponchanok Weeriyanun, Rachael B Collins, A. Macadam, Hugo Kiff, Janna L Randle, K. Quigley
{"title":"Predicting selection-response gradients of heat tolerance in a widespread reef-building coral.","authors":"Ponchanok Weeriyanun, Rachael B Collins, A. Macadam, Hugo Kiff, Janna L Randle, K. Quigley","doi":"10.1242/jeb.243344","DOIUrl":"https://doi.org/10.1242/jeb.243344","url":null,"abstract":"Ocean temperatures continue to rise owing to climate change, but it is unclear whether heat tolerance of marine organisms will keep pace with warming. Understanding how tolerance scales from individuals to species and quantifying adaptive potentials is essential to forecasting responses to warming. We reproductively crossed corals from a globally distributed species (Acropora tenuis) on the Great Barrier Reef (Australia) from three thermally distinct reefs to create 85 offspring lineages. Individuals were experimentally exposed to temperatures (27.5, 31 and 35.5°C) in adult and two critical early life stages (larval and settlement) to assess acquired heat tolerance via outcrossing of offspring phenotypes by comparing five physiological responses (photosynthetic yields, bleaching, necrosis, settlement and survival). Adaptive potentials and physiological reaction norms were calculated across three stages to integrate heat tolerance at different biological scales. Selective breeding improved larval survival to heat by 1.5-2.5× but did not result in substantial enhancement of settlement, although population crosses were significantly different. Under heat stress, adults were less variable compared with larval responses in warmer reefs than in the cooler reef. Adults and offspring also differed in their mean population responses, likely underpinned by heat stress imposing strong divergent selection on adults. These results have implications for downstream selection during reproduction, evidenced by variability in a conserved heat tolerance response across offspring lineages. These results inform our ability to forecast the impacts of climate change on wild populations of corals and will aid in developing novel conservation tools such as the assisted evolution of at-risk species.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80340717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A quantitative genetics perspective on the body-mass scaling of metabolic rate. 代谢率体质量标度的定量遗传学研究。
THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY Pub Date : 2022-03-08 DOI: 10.1242/jeb.243393
V. Careau, D. S. Glazier
{"title":"A quantitative genetics perspective on the body-mass scaling of metabolic rate.","authors":"V. Careau, D. S. Glazier","doi":"10.1242/jeb.243393","DOIUrl":"https://doi.org/10.1242/jeb.243393","url":null,"abstract":"Widely observed allometric scaling (log-log slope<1) of metabolic rate (MR) with body mass (BM) in animals has been frequently explained using functional mechanisms, but rarely studied from the perspective of multivariate quantitative genetics. This is unfortunate, given that the additive genetic slope (bA) of the MR-BM relationship represents the orientation of the 'line of least genetic resistance' along which MR and BM may most likely evolve. Here, we calculated bA in eight species. Although most bA values were within the range of metabolic scaling exponents reported in the literature, uncertainty of each bA estimate was large (only one bA was significantly lower than 3/4 and none were significantly different from 2/3). Overall, the weighted average for bA (0.667±0.098 95% CI) is consistent with the frequent observation that metabolic scaling exponents are negatively allometric in animals (b<1). Although bA was significantly positively correlated with the phenotypic scaling exponent (bP) across the sampled species, bP was usually lower than bA, as reflected in a (non-significantly) lower weighted average for bP (0.596±0.100). This apparent discrepancy between bA and bP resulted from relatively shallow MR-BM scaling of the residuals [weighted average residual scaling exponent (be)=0.503±0.128], suggesting regression dilution (owing to measurement error and within-individual variance) causing a downward bias in bP. Our study shows how the quantification of the genetic scaling exponent informs us about potential constraints on the correlated evolution of MR and BM, and by doing so has the potential to bridge the gap between micro- and macro-evolutionary studies of scaling allometry.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83819889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信