Synthesis and Sintering最新文献

筛选
英文 中文
Examination of water uptake performance and mechanical properties of PLA/flax fiber biocomposites with the coupling agent 偶联剂对聚乳酸/亚麻纤维生物复合材料吸水性能和力学性能的影响
Synthesis and Sintering Pub Date : 2022-04-01 DOI: 10.53063/synsint.2022.22102
A. Avcı, Ayşegul Akdogan Eker, M. Bakkal, M. Bodur
{"title":"Examination of water uptake performance and mechanical properties of PLA/flax fiber biocomposites with the coupling agent","authors":"A. Avcı, Ayşegul Akdogan Eker, M. Bakkal, M. Bodur","doi":"10.53063/synsint.2022.22102","DOIUrl":"https://doi.org/10.53063/synsint.2022.22102","url":null,"abstract":"The paper reports, the effect of water sorption on the microstructural and flexural properties of the flax fiber/ polylactic acid (PLA) biocomposites compared to the composites with maleic anhydride (MAH) as coupling agents and alkali treatment. In the current study, five different biocomposites which are 15 % wt. flax/PLA, 25 % wt. flax/PLA as control group and15 % wt. flax/PLA, 25 % wt. flax /PLA, and 35% wt. flax / PLA with 5 % wt. MAH was produced. Ten different soaking times were studied to understand the water absorption behavior of the biocomposites. To investigate mechanical properties of the biocomposites impact test was applied on the dry and 750 h, 1850 h water sorption composites. A three-point bending test was performed on the dry and 1850 h water sorption biocomposites to determine flexural properties. Short flax fiber-reinforced PLA matrix biocomposites were compounded using extrusion and manufactured by injection molding. Flax fiber surface was treated using sodium hydroxy solution to advance the interface interaction between fiber-matrix and surface performance of the fiber and matrix. According to the results, alkali treatment improved the water gain resistance of the composites since its enhancement of the interfacial bonding. Alkali-treated composites with maleic anhydride showed the better impact and flexural strength than composites without alkali-treated after 1850 h water sorption.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73778440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts mxenes基金属硫化物光催化剂制氢研究进展
Synthesis and Sintering Pub Date : 2022-03-29 DOI: 10.53063/synsint.2022.21106
Asieh Akhoondi, H. Ghaebi, L. Karuppasamy, Mohammed M. Rahman, P. Sathishkumar
{"title":"Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts","authors":"Asieh Akhoondi, H. Ghaebi, L. Karuppasamy, Mohammed M. Rahman, P. Sathishkumar","doi":"10.53063/synsint.2022.21106","DOIUrl":"https://doi.org/10.53063/synsint.2022.21106","url":null,"abstract":"At present, the composition and crystalline structure of transition metal nitrides or carbides (MXenes) and their derivatives are continuously expanding due to their unique physicochemical properties, especially in the photocatalytic field. Advances over the past four years have led to improved preparation of new MAX phases, resulting in new MXenes with excellent photo-thermal effect, considerable specific surface area, long-term stability and optimum activity. Since MXenes have good electrical conductivity and their bandgap is adjustable under the visible light range, this group is one of the best promising candidates for hydrogen production from photo-splitting of water as an environment-friendly method of converting sunlight to chemical energy. Progress in noble metal-free photocatalyst associated with more understanding of the fundamental mechanism of photocatalysis has enabled a proper choice of cocatalyst with better efficiency. In this study, the photocatalytic production of hydrogen through MXens as a support and co-catalyst on metal sulfide is summarized and discussed. Recent advances in the design and synthesis of MXenes-based metal sulfide nanocomposites to increase the efficiency of photocatalytic hydrogen production are then highlighted. Finally, the challenges and future prospects for the development of MXenes-based metal sulfide composites are outlined.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90374108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites 烧结ZrB2-SiC-HfB2复合材料的氧化影响区
Synthesis and Sintering Pub Date : 2022-03-26 DOI: 10.53063/synsint.2022.21111
E. Dodi, Z. Balak, Hosein Kafashan
{"title":"Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites","authors":"E. Dodi, Z. Balak, Hosein Kafashan","doi":"10.53063/synsint.2022.21111","DOIUrl":"https://doi.org/10.53063/synsint.2022.21111","url":null,"abstract":"Understanding the behavior of ultra-high temperature ceramics (UHTCs) against oxidation is of particular importance in high-temperature applications. In this study, ZrB2–SiC–HfB2 UHTC composites were fabricated by spark plasma sintering (SPS) method at different temperatures, times, and pressures to investigate the effects of sintering process variables on their oxidation resistance. Before the oxidation tests, the as-sintered samples contained ZrB2 and SiC phases with (Zr,Hf)B2 solid solution. The samples were subjected to oxidative conditions at 1400 °C and their relative mass changes were measured as a function of oxidation time up to 20 hours. FESEM and EDS equipment were used for microstructural and elemental analyzes of cross-sections of different oxide layers. Due to the oxygen diffusion, ZrO2 and SiO2 phases appeared alongside (Zr, Hf)O2 in the surface layers. After identifying the several oxides and SiC-depleted layers in the oxidation-affected zone, a schematic model for the arrangement of such layers was proposed.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79022471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Performance of glucose, sucrose and cellulose as carbonaceous precursors for the synthesis of B4C powders 葡萄糖、蔗糖和纤维素作为碳质前驱体合成B4C粉末的性能
Synthesis and Sintering Pub Date : 2022-03-25 DOI: 10.53063/synsint.2022.21108
Seyed Faridaddin Feiz, L. Nikzad, H. Majidian, E. Salahi
{"title":"Performance of glucose, sucrose and cellulose as carbonaceous precursors for the synthesis of B4C powders","authors":"Seyed Faridaddin Feiz, L. Nikzad, H. Majidian, E. Salahi","doi":"10.53063/synsint.2022.21108","DOIUrl":"https://doi.org/10.53063/synsint.2022.21108","url":null,"abstract":"Boron carbide is the third hardest material in the world after diamond and cubic boron nitride, which is one of the most strategic engineering ceramics in various industrial applications. The aim of this research is to synthesize B4C by reacting boric acid as boron source with polymers from the saccharide family as carbon sources, and to determine the best saccharide as precursor. For this purpose, glucose (monosaccharide), sucrose (disaccharide), and cellulose (polysaccharide) were used and examined. The samples were prepared by appropriate mixing of the starting materials, pyrolysis at 700 °C, and synthesis at 1500 °C. The results of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD) showed that among the studied saccharide polymers, glucose is the best carbon source candidate for the synthesis of B4C. To describe precisely, the specimen prepared with glucose and boric acid had more boron carbide and less hydrocarbon.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80144338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part III: microstructure Ti3AlC2 MAX相对原位合成TiAl金属间化合物性能的影响第三部分:微观结构
Synthesis and Sintering Pub Date : 2022-03-20 DOI: 10.53063/synsint.2022.2182
M. Akhlaghi, E. Salahi, S. A. Tayebifard, G. Schmidt
{"title":"Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part III: microstructure","authors":"M. Akhlaghi, E. Salahi, S. A. Tayebifard, G. Schmidt","doi":"10.53063/synsint.2022.2182","DOIUrl":"https://doi.org/10.53063/synsint.2022.2182","url":null,"abstract":"In this paper, the 3rd part of a series of publications on the sinterability and characteristics of TiAl–Ti3AlC2 composites, the microstructure development during the synthesis and sintering processes was studied by scanning electron microscopy (SEM). Chemical evaluation of various phases in the developed microstructures was performed using energy-dispersive X-ray spectroscopy (EDS) in different ways such as point, line scan and two-dimensional elemental map analyses. For this purpose, five samples were fabricated with different percentages of Ti3AlC2 MAX phase additive (10, 15, 20, 25 and 30 wt%). Ball-milling and spark plasma sintering (SPS: 900 °C/7 min/40 MPa) of as-purchased Al and Ti powders with already-synthesized Ti3AlC2 additive were selected as composite making methodology. SEM/EDS analyses verified the in-situ manufacturing of TiAl/Ti3Al intermetallics as the matrix during the SPS process and the presence of Ti3AlC2 as the ex-situ added secondary phase. Moreover, the in-situ synthesis of Ti2AlC, another member of MAX phases in Ti-Al-C system, was also detected in titanium aluminide grain boundaries and attributed to a chemical reaction between TiC (an impurity in the initial Ti3AlC2 additive) and TiAl components.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83401885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Impact of bridging oxygens formation on optical properties of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 glasses 桥氧形成对Fe3+掺杂Li2O-Al2O3-SiO2-TiO2玻璃光学性能的影响
Synthesis and Sintering Pub Date : 2022-03-13 DOI: 10.53063/synsint.2022.2179
A. Faeghinia
{"title":"Impact of bridging oxygens formation on optical properties of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 glasses","authors":"A. Faeghinia","doi":"10.53063/synsint.2022.2179","DOIUrl":"https://doi.org/10.53063/synsint.2022.2179","url":null,"abstract":"In this study, the structural chemistry of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 (LAST) glasses has been analyzed utilizing UV-Vis spectroscopy. Optical parameters like absorption and extinction coefficients, indirect and direct optical band gaps, Urbach energy as well as Fermi energy level of samples were estimated via their absorption spectra. Then, it was tried to make a relationship between the variation of mentioned parameters and structural chemistry of different doped samples. Results of the investigation illustrated that even a little change in the microstructure of glassy samples has an effect on optical parameters and accordingly it could be sensible. Furthermore, it was revealed that Fe3+ ions have the role of network forming in the structure of glass by increasing the formation of bridging oxygens (BOs) in the matrix.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88354996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular hydrogen production by radiolysis of water on the surface of nano-ZrO2 under the influence of gamma rays 伽玛射线作用下纳米zro2表面水的辐射解氢研究
Synthesis and Sintering Pub Date : 2022-02-19 DOI: 10.53063/synsint.2022.21105
G. Imanova
{"title":"Molecular hydrogen production by radiolysis of water on the surface of nano-ZrO2 under the influence of gamma rays","authors":"G. Imanova","doi":"10.53063/synsint.2022.21105","DOIUrl":"https://doi.org/10.53063/synsint.2022.21105","url":null,"abstract":"In this research, the radiation-heterogeneous processes of water decomposition on the surface of zirconium dioxide nanoparticles (n-ZrO2) were studied. The kinetics of buildup of molecular hydrogen during the radiolytic processes of water decomposition was also examined. The production of H2 and H2O2 through water radiolysis was investigated to develop a computational model and disclose the kinetic behavior of water radiolysis. The enthalpy of ZrO2 nanoparticles was studied at the temperature range T=1200-2900 K, in which ZrO2 nanoparticles has a two-phase transition. Some of the electrons were transported to the surface of the nanoparticles during the physical and physicochemical stages of the process and emitted into the water. At the same time, the migration of energy carriers in radioactively active oxide compounds changed at different intervals depending on the composition, structural stability, and electro-physical properties of the oxides.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78359168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Synthesis and sintering of Fe-32Mn-6Si shape memory alloys prepared by mechanical alloying 机械合金化制备Fe-32Mn-6Si形状记忆合金的合成与烧结
Synthesis and Sintering Pub Date : 2022-02-07 DOI: 10.53063/synsint.2022.2185
A. Shamsipoor, Babak Mousavi, M. Shakeri
{"title":"Synthesis and sintering of Fe-32Mn-6Si shape memory alloys prepared by mechanical alloying","authors":"A. Shamsipoor, Babak Mousavi, M. Shakeri","doi":"10.53063/synsint.2022.2185","DOIUrl":"https://doi.org/10.53063/synsint.2022.2185","url":null,"abstract":"Fe-32Mn-6Si alloy was produced using the mechanical alloying (MA) process of high purity powders under an inert argon gas atmosphere. The aim of this investigation is the in-depth study of the microstructure and phase transformation during the milling-sintering process of Fe-32Mn-6Si shape memory alloys. During the milling process, a significant amount of amorphous phase was created as well the crystalline martensite and austenite phases. The amorphous phase was increased by milling time enhancement and then it was decreased due to the mechano-crystalization phenomenon. It was detected that the microhardness of the alloyed powder directly depends on the amount of the amorphous phase. Furthermore, the particle size of as-milled powder firstly decreased and then increased, when the amorphous phase cojoined gradually during the milling process the transformation of martensite into austenite. The lattice strain was increased considerably during the milling process which was a reason for martensite phase creation resulting in the high shape memory properties. The amount of pre-strain for Fe-32Mn-6Si alloy was calculated to be 3.3%. Furthermore, the optimum sintering temperature was approved to be 950 °C by reduction of the percentage of pores and suitable densification.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75143085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sol-gel zinc oxide nanoparticles: advances in synthesis and applications 溶胶-凝胶氧化锌纳米颗粒:合成与应用进展
Synthesis and Sintering Pub Date : 2021-12-29 DOI: 10.53063/synsint.2021.1477
Parisa Shafiee, Mehdi Reisi Nafchi, Sara Eskandarinezhad, S. Mahmoudi, E. Ahmadi
{"title":"Sol-gel zinc oxide nanoparticles: advances in synthesis and applications","authors":"Parisa Shafiee, Mehdi Reisi Nafchi, Sara Eskandarinezhad, S. Mahmoudi, E. Ahmadi","doi":"10.53063/synsint.2021.1477","DOIUrl":"https://doi.org/10.53063/synsint.2021.1477","url":null,"abstract":"Zinc oxide nanoparticles (ZnO) exhibit numerous characteristics such as biocompatibility, UV protection, antibacterial activity, high thermal conductivity, binding energy, and high refractive index that make them ideal candidates to be applied in a variety of products like solar cells, rubber, cosmetics, as well as medical and pharmaceutical products. Different strategies for ZnO nanoparticles’ preparation have been applied: sol-gel method, co-precipitation method, etc. The sol-gel method is an economic and efficient chemical technique for nanoparticle (NPs) generation that has the ability to adjust the structural and optical features of the NPs. Nanostructures are generated from an aqueous solution including metallic precursors, chemicals for modifying pH using either a gel or a sol as a yield. Among the various approaches, the sol-gel technique was revealed to be one of the desirable techniques for the synthesis of ZnO nanoparticles. In this review, we explain some novel investigations about the synthesis of zinc oxide nanoparticles via sol-gel technique and applications of sol-gel zinc oxide nanoparticles. Furthermore, we study recent sol-gel ZnO nanoparticles, their significant characteristics, and their applications in biomedical applications, antimicrobial packaging, drug delivery, semiconductors, biosensors, catalysts, photoelectron devices, and textiles.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74521384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Hydrogen evolution via noble metals based photocatalysts: A review 贵金属基光催化剂析氢研究进展
Synthesis and Sintering Pub Date : 2021-12-29 DOI: 10.53063/synsint.2021.1468
Asieh Akhoondi, Anirudh Sharma, D. Pathak, M. Yusuf, T. Demissie, R. Guo, Adnan Ali
{"title":"Hydrogen evolution via noble metals based photocatalysts: A review","authors":"Asieh Akhoondi, Anirudh Sharma, D. Pathak, M. Yusuf, T. Demissie, R. Guo, Adnan Ali","doi":"10.53063/synsint.2021.1468","DOIUrl":"https://doi.org/10.53063/synsint.2021.1468","url":null,"abstract":"In recent decades, the use of photocatalysts in the evolution of hydrogen (H2) has received much attention. However, the use of the well-known titanium oxide and another photocatalyst as a base for noble metals is limited due to their major weakness in electron-hole pair separation. The use of cocatalysts can be a good way to overcome this problem and provide better performance for the evolution of hydrogen. In this review, suitable high-efficiency cocatalysts for solar hydrogen production have been thoroughly reviewed. New strategies and solutions were examined in terms of increasing the recombination of charge carriers, designing reactive sites, and enhancing the wavelengths of light absorption. Several new types of cocatalysts based on semiconductors in noble groups and dual metals have been evaluated. It is expected that these photocatalysts will be able to reduce the activation energy of reaction and charge separation. In this regard, the existing views and challenges in the field of photocatalysts are presented. The characteristics of monoatomic photocatalysts are reviewed in this manuscript and the latest advances in this field are summarized. Further, the future trends and upcoming research are also briefly discussed. Finally, this review presents noble metal-based photocatalysts for providing suitable photocatalysts on a larger scale and improving their applicability.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80037477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信