Zhipeng Wang, Z. Ning, Wen-ming Guo, Weinan Lu, Fangtao Lyu, Gen Liu
{"title":"Pressure Transient Analysis for Water Injection Wells with Waterflooding-Induced Nonsimultaneously Closed Multistorage Fractures: Semianalytical Model and Case Study","authors":"Zhipeng Wang, Z. Ning, Wen-ming Guo, Weinan Lu, Fangtao Lyu, Gen Liu","doi":"10.2118/214695-pa","DOIUrl":"https://doi.org/10.2118/214695-pa","url":null,"abstract":"\u0000 Waterflooding will induce the opening and extension of fractures, which will create some water flow channels. Due to fracture multiclosures, the obtained fracture half-length from conventional finite-conductivity models is less than the actual value, leading to water flow channels that have been formed but not detected by engineers. According to a large number of waterflooding-front matching schematics and interwell connection coefficient analyses, we find that waterflooding usually connects natural fractures to form bi-induced fractures, which will close nonsimultaneously during the falloff test. In this paper, we develop a waterflooding-induced nonsimultaneously closed multistorage fracture model (WNMF) to describe waterflooding-induced fracture characteristics accurately. The bi-induced fractures are separated into multiple segments to calculate their pressure response. The closed induced-fracture conductivities are constant, and the opened induced-fracture conductivities follow the exponential equation measured by the experiments. Induced-fracture interference and multistorage effects are considered. Finally, the Duhamel principle is used to characterize the storage effects of bi-induced fractures and the wellbore. Results show that the type curve of the WNMF model has bi-peaks on the pressure derivative curve, which was regarded as error data in the past. Closed induced-fracture half-length is identified quantitatively. We can obtain an induced-fracture angle by matching the interference flow (an innovative flow regime in this paper), which can guide engineers to prevent and monitor water breakthrough in time. Using the obtained parameters (induced-fracture angle and closed induced-fracture half-length) can guide well pattern encryption and reasonable well location determination. If the induced-fracture angle is 90°, an additional horizontal line will be shown on the pressure derivative curve. When the horizontal line is misidentified as a quasiradial flow regime, the obtained reservoir permeability will be amplified many times. The multistorage coefficient is obtained to correct the magnified storage coefficient. Equation calculation and model matching methods verify each other to improve closed induced-fracture half-length accuracy. In conclusion, the experiment and mathematical model methods work together to describe the pressure response behavior of water injection wells. The WNMF model is compared with the conventional finite-conductivity model to verify its accuracy. A field case demonstrates its practicality.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"15 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79029876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Koperna, D. Riestenberg, J. Leierzapf, B. Roth, R. Esposito, K. Sams Gray
{"title":"Building an EPA Class VI Permit Application","authors":"G. Koperna, D. Riestenberg, J. Leierzapf, B. Roth, R. Esposito, K. Sams Gray","doi":"10.2118/210198-pa","DOIUrl":"https://doi.org/10.2118/210198-pa","url":null,"abstract":"\u0000 To accelerate the commercialization of carbon capture and storage (CCS), the US Department of Energy (US DOE) is building on decades of characterization efforts and pilot-scale projects through their CarbonSAFE program. Administered through their National Energy Technology Laboratory, this program seeks to bring fully integrated projects to the sector that can store more than 50 million tonnes of CO2 over a 30-year period. The program, which was enacted before the enhancement of Internal Revenue Code Section 45Q, is in the capture assessment, characterization, and permitting phase. The objectives of this paper are to discuss (a) the injection permitting requirements of the CarbonSAFE projects; (b) information gathering in support of the permit; (c) the timelines of field development and permit-related activities; (d) the major technical components of the field development plan; and (e) early feedback from the regulators toward acceptance of the permit.\u0000 In Mississippi, more than 30,000 acres have been characterized by six deep characterization wells, a deep groundwater well, and 92 line miles of 2D seismic as part of the CarbonSAFE Project ECO2S. During the acquisition of seismic data, all receiver lines were live, which resulted in the generation of a pseudo-3D seismic design. The incorporation of a 3D seismic survey was not included as part of this project due to logistical difficulties presented by the undulating, wooded surface terrain. A suite of openhole geophysical logs was taken from each well, allowing for a detailed interpretation of prospective storage reservoirs and confining intervals to complement the analysis carried out on the 290 ft of a whole core that was cut through the prospective confining zone and storage reservoir. The detailed geologic and reservoir data were assembled and entered into a 3D model to assess the injection capacity and the area of review (AoR). This information fed into the detailed corrective action, monitoring, testing, and postinjection site care (PISC) modeling.\u0000 The results have been exceptional. The geologic assessment has revealed three primary storage targets, ranging in depth from 3,500 ft to 6,000 ft. These storage reservoirs net 1,300 ft of sandstone, with mean porosity and permeability of 29% and 3.6 darcies, respectively. Together, these reservoirs have storage capacities that may exceed 20 million tonnes per square mile, making this a gigatonne prospect. Forward modeling of the project resulted in an AoR of 16 sq miles, injecting about 8000 t/d, for 30 years, via two deep injection wells. The excellent confining characteristics of the caprock, relatively simple geologic structure, and lack of historical well drilling activity in this area provide excellent containment of the injected CO2. Based on this work, the project has proposed 20 years of PISC.\u0000 To date, only two US CO2 injection permits have been granted. These projects relied on a singular capture point feeding a singular sequestratio","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"513 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77352772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lithofacies, Deposition, and Clinoforms Characterization Using Detailed Core Data, Nuclear Magnetic Resonance Logs, and Modular Formation Dynamics Tests for Mishrif Formation Intervals in West Qurna/1 Oil Field, Iraq","authors":"Ahmed N. Al-Dujaili, M. Shabani, M. Al-Jawad","doi":"10.2118/214689-pa","DOIUrl":"https://doi.org/10.2118/214689-pa","url":null,"abstract":"\u0000 This study considered the complexity of Mishrif geology and its effect on fluid movement within and across Mishrif reservoir intervals. For this purpose, we analyzed the following items: the multiple interval communication with high permeability contrast, the geological setting of the upper Mishrif (mA) interval, the channel structure in the Lower Mishrif-Part 1 (mB1) interval, the thin layers in the upper part of Lower Mishrif-Part 2 (mB2U) of very high permeability, and the microporous interval of the lower part of Lower Mishrif-Part 2 (mB2L); none of them were well defined before this work. The bottom interval of Mishrif or Rumaila (mC) is predominantly microporous, and the best reservoir is at the top of intermediate quality. Two high-porosity layers are systematically found in the mC unit, which is casually referred to as “rabbit ears.” The mB2L contains grainstones in the far north of the West Qurna/1 oil field (WQ1). In the south of mB2L, some of the toe sets from the clinoforms in a distal depositional setting have developed into rather important vertical pressure baffles and barriers to vertical flow.\u0000 The mB2U generally consists of grainstones with thin streaks of mudstone high flow layers (HFLs), and the rocks underneath are described generally as grainstone shoals. About 80% of stock tank oil originally in place (STOOIP) in mB2U exists in grainstones. There are no known microporous reservoirs in mB2U. The pressure difference across the boundaries between mB1 and mA can be positive or negative. At the base, mB1 channels are always in pressure communication with the mB2U below. The best flow from the mA comes from HFLs, which are found around faults. Reservoir quality within mA is generally best in the first section of the upper Mishrif (mAa), and the majority of STOOIP in mA exists in microporous rocks, while some 30% of STOOIP is contained in grainstones.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"18 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83810037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of Nano Heavy Metal Oxide Particles on the Wettability of Carbonate Reservoir Rock","authors":"Hassan Pashaei, A. Ghaemi, Rohaladin Miri","doi":"10.2118/214694-pa","DOIUrl":"https://doi.org/10.2118/214694-pa","url":null,"abstract":"\u0000 Production of oil from carbonate rocks is very challenging due to their inherent nature, such as detection, complex wettability, pore structure, and low recovery factor. Nanoparticles (NPs) are recognized as remarkable materials for a wide range of research and commercial applications due to their physical properties and characteristics. Extensive research in recent years has shown that nanoscience can provide great potential for the development of carbonate reservoirs and enhanced oil recovery (EOR). In this study, the carbonate core plug samples were prepared from an Iranian reservoir. At first, the wettability capacity of the core samples was evaluated. This process was carried out by evaluating wettability changes using the contact angle of base fluid and nanofluid. The potential of the NPs (ZnO, TiO2, and ZrO2) to change the wettability was experimentally tested in the loading NPs from 0.01 wt% to 0.5 wt% by the contact angle method. Wettability studies have shown that nanofluids can influence wettability variability from oil-wet to water-wet quality. About 0.05 wt% of NPs was found to be the optimal concentration to affect wettability change. The same behavior was observed for all nanofluids at the same NP loading; while TiO2 showed better performance with a sharp change from an oil-wet state (θ = 151.9°) to a water-wet state (θ = 111.3°), ZnO, and ZrO2 changed wettability to a moderately-wet condition (θ = 108.6° and 118.6°, respectively) at 0.05 wt% NP loading. We conclude that TiO2-based nanofluids have great potential as EOR agents, and TiO2 is very impressive in its strong water-wettability. The highest oil recovery in the optimal amount for all three nanofluids was obtained as 35.2%, 23.2%, and 25.6%, respectively, for TiO2, ZnO, and ZrO2 nanofluids. Furthermore, we considered the effect of nanofluids on the recovery performance of the brine/oil system for carbonate core samples. The results showed that nanofluids can significantly imbibe into the core sample, and as a result, the final oil recovery is significant.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"37 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81555082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric Sonny Mathew, Moussa Tembely, Waleed AlAmeri, Emad W. Al-Shalabi, Abdul Ravoof Shaik
{"title":"Application of Machine Learning to Interpret Steady-State Drainage Relative Permeability Experiments","authors":"Eric Sonny Mathew, Moussa Tembely, Waleed AlAmeri, Emad W. Al-Shalabi, Abdul Ravoof Shaik","doi":"10.2118/207877-pa","DOIUrl":"https://doi.org/10.2118/207877-pa","url":null,"abstract":"Summary A meticulous interpretation of steady-state or unsteady-state relative permeability (Kr) experimental data is required to determine a complete set of Kr curves. In this work, different machine learning (ML) models were developed to assist in a faster estimation of these curves from steady-state drainage coreflooding experimental runs. These ML algorithms include gradient boosting (GB), random forest (RF), extreme gradient boosting (XGB), and deep neural network (DNN) with a main focus on and comparison of the two latter algorithms (XGB and DNN). Based on existing mathematical models, a leading-edge framework was developed where a large database of Kr and capillary pressure (Pc) curves were generated. This database was used to perform thousands of coreflood simulation runs representing oil-water drainage steady-state experiments. The results obtained from these simulation runs, mainly pressure drop along with other conventional core analysis data, were used to estimate analytical Kr curves based on Darcy’s law. These analytically estimated Kr curves along with the previously generated Pc curves were fed as features into the ML model. The entire data set was split into 80% for training and 20% for testing. The k-fold cross-validation technique was applied to increase the model’s accuracy by splitting 80% of the training data into 10 folds. In this manner, for each of the 10 experiments, nine folds were used for training and the remaining fold was used for model validation. Once the model was trained and validated, it was subjected to blind testing on the remaining 20% of the data set. The ML model learns to capture fluid flow behavior inside the core from the training data set. In terms of applicability of these ML models, two sets of experimental data were needed as input; the first was the analytically estimated Kr curves from the steady-state drainage coreflooding experiments, while the other was the Pc curves estimated from centrifuge or mercury injection capillary pressure (MICP) measurements. The trained/tested model was then able to estimate Kr curves based on the experimental results fed as input. Furthermore, to test the performance of the ML model when only one set of experimental data is available to an end user, a recurrent neural network (RNN) algorithm was trained/tested to predict Kr curves in the absence of Pc curves as an input. The performance of the three developed models (XGB, DNN, and RNN) was assessed using the values of the coefficient of determination (R2) along with the loss calculated during training/validation of the model. The respective crossplots along with comparisons of ground truth vs. artificial intelligence (AI)-predicted curves indicated that the model is capable of making accurate predictions with an error percentage between 0.2% and 0.6% on history-matching experimental data for all three tested ML techniques. This implies that the AI-based model exhibits better efficiency and reliability in determining","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136195337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Temperature on Two-Phase Gas/Oil Relative Permeability in Viscous Oil Reservoirs: A Combined Experimental and History-Matching-Based Analysis","authors":"Saket Kumar, H. Sarma, B. Maini","doi":"10.2118/208897-pa","DOIUrl":"https://doi.org/10.2118/208897-pa","url":null,"abstract":"\u0000 Thermal enhanced oil recovery (TEOR) is the most widely accepted method for exploiting the heavy oil reservoirs in North America. In addition to improving the mobility of oil due to its viscosity reduction, the high temperature down in the hole due to the injection of the vapor phase may significantly alter the fluid flow performance and behavior, as represented by the relative permeability to fluids in the formations. Therefore, in TEOR, the relative permeabilities can change with a change in temperature. Also, there is no model that accounts for the change in temperature on two-phase gas/oil relative permeability. Further, the gas/oil relative permeability and its dependence on temperature are required data for the numerical simulation of TEOR. Very few studies are available on this topic with no emerging consensus on a general behavior of such effects. The scarcity of such studies is mostly due to experimental problems to make reliable measurements. Therefore, the primary objective of this study was to overcome the experimental issues and investigate the effect of temperature on gas/oil relative permeability. Oil displacement tests were carried out in a 45-cm-long sandpack at temperatures ranging from 64°C to 210°C using a viscous mineral oil (PAO-100), deionized water, and nitrogen gas. It was found that the unsteady-state method was susceptible to several experimental artifacts in viscous oil systems due to a very adverse mobility ratio. However, despite such experimental artifacts, a careful analysis of the displacement data led to obtaining meaningful two-phase gas/oil relative permeability curves. These curves were used to interpret the relative permeability curves for gas/heavy oil systems using the experimentally obtained displacement results.\u0000 We noted that at the end of gasflooding, the “final” residual oil saturation (Sor) still eluded us even after several pore volumes (PVs) of gas injection. This rendered the experimentally determined endpoint gas relative permeability (krge) and Sor unreliable. In contrast, the irreducible water saturation (Swir) and the endpoint oil relative permeability (kroe) were experimentally achievable. The complete two-phase gas/heavy oil relative permeability curves are inferred with a newly developed systematic history-matching algorithm in this study. This systematic history-matching technique helped us to determine the uncertain parameters of the oil/gas relative permeability curves, such as the two exponents of the Corey equation (No and Ng), Sor and krge. The history match showed that kroe and Swir were experimentally achievable and were reliably interpreted, except these four parameters (i.e., Corey exponents, true residual oil saturation, and gas endpoint relative permeability) were interpreted from simulations rather than from experiments. Based on our findings, a new correlation has been proposed to model the effect of temperature on two-phase gas/heavy oil relative permeability.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81104695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling Two-Phase Flow in Tight Core Plugs with an Application for Relative Permeability Measurement","authors":"M. Yousefi, H. Dehghanpour","doi":"10.2118/214659-pa","DOIUrl":"https://doi.org/10.2118/214659-pa","url":null,"abstract":"\u0000 The two-phase flow of immiscible fluids in porous media has been studied for a long time in different disciplines of engineering. Relative permeability (kr) is one of the constitutional relationships in the general equation governing immiscible displacement that needs to be determined. Due to the complexity and nonlinear nature of governing equations of the problem, there is no unique model for relative permeability. The modified Brooks and Corey (MBC) model is the most common model for kr prediction. Here, a practical technique is presented to measure kr for low-permeability tight rocks. We use this experimental data to tune the empirical constants of the MBC model. The proposed method is based on a simple mathematical technique that uses assumptions of frontal advance theory to model the pressure drop along the core plug during two-phase immiscible displacement at constant injection flow rate. We make simplifying assumptions about the highest point on the observed pressure profile and use those assumptions to determine relative permeability of a tight rock sample. In the end, the amount of work for an immiscible displacement is calculated as the area under the pressure-profile curve. The effect of initial water saturation (Swi) and interfacial tension (IFT) is studied on the work required for an immiscible displacement. Using this concept, it is concluded that adding chemical additives such as surfactants to fracturing fluids can help the reservoir oil to remove the water blockage out of the rock matrix more easily while maintaining the flow rate at an economic level.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78642988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic Multiwell Assessment of Flow-Related Petrophysical Properties of Tight-Gas Sandstones Based on the Physics of Mud-Filtrate Invasion","authors":"M. Bennis, C. Torres‐Verdín","doi":"10.2118/214668-pa","DOIUrl":"https://doi.org/10.2118/214668-pa","url":null,"abstract":"\u0000 Petrophysical interpretation of borehole geophysical measurements in the presence of deep mud-filtrate invasion remains a challenge in formation evaluation. Traditional interpretation methods often assume a piston-like radial resistivity model to estimate the radial length of invasion, resistivities in the flushed and virgin zones, and the corresponding fluid saturations from apparent resistivity logs. Such assumptions often introduce notable inaccuracies, especially when the radial distribution of formation resistivity exhibits a deep and smooth radial front. Numerical simulation of mud-filtrate invasion and well logs combined with inversion methods can improve the estimation accuracy of petrophysical properties from borehole geophysical measurements affected by the presence of mud-filtrate invasion.\u0000 We develop a new method to quantify water saturation in the virgin zone, residual hydrocarbon saturation, and permeability from borehole geophysical measurements. This method combines the numerical simulation of well logs with the physics of mud-filtrate invasion to quantify the effect of petrophysical properties and drilling parameters on nuclear and resistivity logs. Our approach explicitly considers the different volumes of investigation associated with the borehole geophysical measurements included in the interpretation. The new method is successfully applied to a tight-gas sandstone formation invaded with water-base mud (WBM). Petrophysical properties were estimated in three closely spaced vertical wells that exhibited different invasion conditions (i.e., different times of invasion and different overbalance pressures). Available rock-core laboratory measurements were used to calibrate the petrophysical models and obtain realistic spatial distributions of petrophysical properties around the borehole. This approach assumes that initial water saturation is equal to irreducible water saturation. Based on the calibrated petrophysical models, thousands of invasion conditions were numerically simulated for a wide range of petrophysical properties, including porosity and permeability. Based on the large data set of numerical simulations, analytical and machine-learning (ML) models were combined to infer unknown rock properties in each well. Mean-absolute-percent errors (MAPE) of the analytical and ML models for the estimation of water saturation in the virgin zone are 5% and 2%, respectively, while the MAPE of the analytical models for the estimation of residual hydrocarbon saturation is 10%. Synthetic and field examples are examined to benchmark the successful application and verification of the new interpretation method. Estimates of water saturation in the virgin zone using the new method are in good agreement with core-based models.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"143 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80328579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vivek Shankar, Robert Zagitov, S. Shekhar, A. Gupta, M. Kumar, Ritesh Kumar, Santhosh Veerbhadrappa, P. Nakutnyy
{"title":"Evaluation of ATBS Polymers for Mangala Polymer Flood","authors":"Vivek Shankar, Robert Zagitov, S. Shekhar, A. Gupta, M. Kumar, Ritesh Kumar, Santhosh Veerbhadrappa, P. Nakutnyy","doi":"10.2118/211461-pa","DOIUrl":"https://doi.org/10.2118/211461-pa","url":null,"abstract":"\u0000 Mangala field has been under polymer flood since 2015. The polymer flood has been more successful in accelerating recovery compared to waterflood. As the flood matured, field performance indicated that part of the injected polymer was degrading in the reservoir. Laboratory studies and polymer samples collected from the reservoir suggest that the most likely reason for the degradation is increased hydrolysis due to thermal aging. This degradation compels higher dosing of polymer to make up for the lost viscosity and increases operating costs. Polymer precipitation in the reservoir may also lead to loss of reservoir permeability.\u0000 Literature surveys and preliminary laboratory studies showed that polymers with acrylamide-tertiary-butyl-sulfonic acid monomer units (referred to as ATBS polymers) could be a suitable option for Mangala. To evaluate the hypothesis, the team did a series of laboratory and coreflood studies. The studies include accelerated thermal ageing, rheology, dynamic adsorption, injectivity, waterflood with fresh and degraded samples, and compatibility studies with topside chemicals. Two hydrolyzed polyacrylamide (HPAM) polymers with different degrees of hydrolysis (DOH) and two ATBS polymers were evaluated. The selected ATBS polymer was then tested for compatibility with surface topside chemicals.\u0000 The studies show that the classic 20 to 25% DOH HPAM suffers viscosity degradation and possible precipitation in Mangala reservoir conditions. ATBS polymers and a lower DOH HPAM provide superior results to the incumbent HPAM with an acrylamide (AM) (86)-ATBS (14) copolymer providing the best results. ATBS polymers were especially resistant to cloudpoint lowering and provide some superiority in shear degradation. The ATBS monomer was resistant to hydrolysis during the period of testing. Contrary to the published literature, ATBS polymers showed higher adsorption and their propagation through cores required a higher pressure drop. ATBS polymer seemed to plug a low-permeability section of the core stack. All polymers reach their peak viscosity at 30 to 40% hydrolysis and decline sharply after 40%, but viscosity and cloudpoints measured during accelerated aging are possibly conservative. A large-scale pilot of ATBS injection in Mangala is under way to validate the laboratory test results.\u0000 ATBS polymer can be a suitable polymer for some layers of Mangala with a high residence time and permeability. The choice is driven by the economics of the incremental cost of ATBS for the benefits it offers. In some sands with shorter interwell spacing, a lower DOH HPAM may be a more cost-effective solution.\u0000 The study results in this paper provide insights to operators to understand the reservoir performance of existing polymer floods and plan for future polymer floods.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"136 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76451976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. McCormack, J. McLennan, E. Jagniecki, B. McPherson
{"title":"Discrete Measurements of the Least Horizontal Principal Stress from Core Data: An Application of Viscoelastic Stress Relaxation","authors":"K. McCormack, J. McLennan, E. Jagniecki, B. McPherson","doi":"10.2118/214669-pa","DOIUrl":"https://doi.org/10.2118/214669-pa","url":null,"abstract":"\u0000 The emerging Paradox Oil Play in southeastern Utah is among the most significant unconventional plays in the western USA. The mean total undiscovered oil resources within just the Pennsylvanian Cane Creek interval of the Paradox Basin are believed to exceed 215 million barrels. However, to date, less than 5% (~9 million barrels) of the total Cane Creek resource has been produced from fewer than 40 wells, and only approximately one-half of those are horizontal wells. More than 95% of production is from the central Cane Creek Unit (CCU). Natural fractures are a key feature of many production wells, but stimulation by induced hydraulic fractures is not consistently successful. We hypothesize that more effective production in this play will rely on better fundamental characterization, especially on better quantification of the state of stress. Approximately 110 ft of core, well logs, and a diagnostic fracture injection test (DFIT) were acquired from the State 16-2 well within the CCU. With these data, we applied two methods to constrain and clarify the state of stress. The first technique, the Simpson’s coefficient method, provides lower bounds on the two horizontal principal stresses and relies on only limited data. Alternatively, the viscoelastic stress relaxation (VSR) method is used to estimate the least horizontal principal stress, building on observations that principal stresses become more isotropic as the viscous behavior of a rock is more pronounced. Results of these two methods support the hypothesis that the state of stress in the CCU of the Paradox Basin is nearly lithostatic and isotropic. Other factors consistent with this hypothesis include high formation pore pressure, which tends to reduce the possible stress states by changing the frictional failure equilibrium; lack of induced fractures in the core, which should be present in the case of stress anisotropy; and interbedded halite layers, which given their high degree of ductility, probably lead to greater VSR for the entire sedimentary package.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":"83 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83808685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}