{"title":"Understanding the Multi-Mass Model and Sound Generation of Vocal Fold Oscillation","authors":"M. Park","doi":"10.1063/1.5113911","DOIUrl":"https://doi.org/10.1063/1.5113911","url":null,"abstract":"When a speaker speaks, the vocal fold oscillates, generating a voice. The voice resonating in the vocal tract and in the mouth is converted to speech when the speaker changes the shapes of the mouth and tongue. When the vocal fold oscillates, a voice is generated because the vocal fold oscillation vibrates the air in succession, and the vocal fold oscillation triggers the generation of the fundamental frequency of the vocal fold as well as that of the harmonic sound at the same time. It is not easy to understand these sound generation principles acoustically, however, unless one is equipped with deep knowledge in the fields of physics and acoustics. In this paper, therefore, the vocal fold will be simplified as a multi-mass model, and a way to easily understand the principle that the fundamental frequency and harmonic sound are generated simultaneously by vocal fold oscillation will be presented.When a speaker speaks, the vocal fold oscillates, generating a voice. The voice resonating in the vocal tract and in the mouth is converted to speech when the speaker changes the shapes of the mouth and tongue. When the vocal fold oscillates, a voice is generated because the vocal fold oscillation vibrates the air in succession, and the vocal fold oscillation triggers the generation of the fundamental frequency of the vocal fold as well as that of the harmonic sound at the same time. It is not easy to understand these sound generation principles acoustically, however, unless one is equipped with deep knowledge in the fields of physics and acoustics. In this paper, therefore, the vocal fold will be simplified as a multi-mass model, and a way to easily understand the principle that the fundamental frequency and harmonic sound are generated simultaneously by vocal fold oscillation will be presented.","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116852815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Yuan, Yinshun Wang, Yueyin Wang, Yukai Qiao, Changtao Kan, Wei Pi
{"title":"Experiment and numerical analysis on temporal stability of a bitter-like HTS magnet excited by MPFM","authors":"Xi Yuan, Yinshun Wang, Yueyin Wang, Yukai Qiao, Changtao Kan, Wei Pi","doi":"10.1063/1.5112148","DOIUrl":"https://doi.org/10.1063/1.5112148","url":null,"abstract":"A full high temperature superconducting (HTS) magnet can operate in persistent current mode (PCM), which has promising application in high magnetic field. A laboratory scale Bitter-like HTS magnet stacked by REBaCuO (RE: rare earth element) annular plates was proposed and it can operate in PCM without current lead and joint resistance. This study focuses on the temporal stability of the magnetic field generated by the magnet, which was energized by the multi-pulsed field magnetization (MPFM) method composed of a solenoid coil and pulsed triangular waveform current source and tested at 77 K (LN2 bath). The characteristics of the magnetic field in the magnet with various pulsed current amplitudes, durations and reversal excitation experiments were systematically researched. Moreover, the numerical simulation of the magnet energized with the pulsed current amplitude 3A was performed and the attenuation of the magnetic field in the magnet was discussed and analyzed.A full high temperature superconducting (HTS) magnet can operate in persistent current mode (PCM), which has promising application in high magnetic field. A laboratory scale Bitter-like HTS magnet stacked by REBaCuO (RE: rare earth element) annular plates was proposed and it can operate in PCM without current lead and joint resistance. This study focuses on the temporal stability of the magnetic field generated by the magnet, which was energized by the multi-pulsed field magnetization (MPFM) method composed of a solenoid coil and pulsed triangular waveform current source and tested at 77 K (LN2 bath). The characteristics of the magnetic field in the magnet with various pulsed current amplitudes, durations and reversal excitation experiments were systematically researched. Moreover, the numerical simulation of the magnet energized with the pulsed current amplitude 3A was performed and the attenuation of the magnetic field in the magnet was discussed and analyzed.","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121690720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Order Accurate and High-Speed Calculation System of 1D Laplace and Poisson Equations Using the Interpolation Finite Difference Method","authors":"T. Fukuchi","doi":"10.1063/1.5096395","DOIUrl":"https://doi.org/10.1063/1.5096395","url":null,"abstract":"Among the methods of the numerical analysis of the physical phenomena of the continuum, the finite difference method (FDM) is the first examined method and has been established as a full numerical calculation system over the regular domain. However, there is a general perception that generality in numerical calculations cannot be expected over complex irregular domains. As using the FDM, the development of computational methods that are applicable over any irregular domain is considered to be a very important contemporary problem. In the FDM, there is a marked characteristic that the theory developed by the (spatial) one-dimensional (1D) problem is naturally applied to the 2D and 3D problems. The calculation method is called the interpolation FDM (IFDM). In this paper, attention is paid to 1D Laplace and Poisson equations, and the whole image of the IFDM using the algebraic polynomial interpolation method (APIM), the IFDM-APIM, is described. Based on the Lagrange interpolation function, the spatial difference schemes from 2nd order to 10th order including odd order are calculated and defined instantaneously over equally/unequally spaced grid points, then, high-order accurate and high-speed computations become possible.Among the methods of the numerical analysis of the physical phenomena of the continuum, the finite difference method (FDM) is the first examined method and has been established as a full numerical calculation system over the regular domain. However, there is a general perception that generality in numerical calculations cannot be expected over complex irregular domains. As using the FDM, the development of computational methods that are applicable over any irregular domain is considered to be a very important contemporary problem. In the FDM, there is a marked characteristic that the theory developed by the (spatial) one-dimensional (1D) problem is naturally applied to the 2D and 3D problems. The calculation method is called the interpolation FDM (IFDM). In this paper, attention is paid to 1D Laplace and Poisson equations, and the whole image of the IFDM using the algebraic polynomial interpolation method (APIM), the IFDM-APIM, is described. Based on the Lagrange interpolation function, the spatial differ...","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117002484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taixia Shi, L. Dong, Yongqiang Chen, Yong Sun, Yanhong Liu, F. Deng, Lixiang Liu, Yun-long Shi, Yanyan Shen
{"title":"Using Artificial Magnetic Conductors to Improve the Efficiency of Wireless Power Transfer","authors":"Taixia Shi, L. Dong, Yongqiang Chen, Yong Sun, Yanhong Liu, F. Deng, Lixiang Liu, Yun-long Shi, Yanyan Shen","doi":"10.1063/1.5092143","DOIUrl":"https://doi.org/10.1063/1.5092143","url":null,"abstract":"In this study, an advanced wireless power transfer (WPT) system of two coils with the artificial magnetic conductors (AMC) is explored through simulations and experiments. The AMC structure is adde...","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"04 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127255273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Andreev, T. Andreeva, I. Kompanets, S. Torgova, N. Zalyapin
{"title":"Dynamics of the Director Reorientation and Light Modulation in Helix-Free Ferroelectric Liquid Crystals","authors":"A. Andreev, T. Andreeva, I. Kompanets, S. Torgova, N. Zalyapin","doi":"10.1063/1.5051411","DOIUrl":"https://doi.org/10.1063/1.5051411","url":null,"abstract":"The dynamics of the director reorientation in new helix-free ferroelectric liquid crystals (FLC) is considered. These materials are specially designed helix-free FLCs with a rather low value of the spontaneous polarization (less than 50 nC/cm2) and high viscosity (from 0.3 to 1.0 Poise), which are characterized by a spatial periodic deformation of smectic layers in the absence of an electric field. FLC director reorientation is due to the motion of solitons – spatially localized waves of a stationary profile that arise in an alternating electric field upon transition to the Maxwellian mechanism of energy dissipation. A theoretical model is proposed for describing the spatial-periodic deformation of FLC and reorientation of its director. The frequency and field experimental dependences of FLC electro-optical response time are presented for the modulation of the light transmission with fastest response among all LC materials. The novel helix-free FLC are able to efficiently modulate the visible and near IR radiation at frequencies up to 7 kHz at the electric field strength of the order of 1-2 V/μm. The conditions for the continuous hysteresis-free electro-optical response were determined, and such a response was realized for the first time in the frequency range up to 6 kHz.","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126918094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Canonical Scattering Coefficients Upward Recursion Algorithm for Multilayered Sphere or Long Cylinder with Large Size Parameters","authors":"N. Shiloah","doi":"10.1063/1.5045163","DOIUrl":"https://doi.org/10.1063/1.5045163","url":null,"abstract":"Calculation of the scattering coefficients appearing in Mie theory involves recursive relations for Bessel or Riccati-Bessel functions. Canonical recommendations prescribe using both upward and downward recursions for different types of functions. This makes the computational algorithm rather cumbersome. We have justified here the procedure using the upward recursions only, whose results are as stable as the canonical recommendations.Calculation of the scattering coefficients appearing in Mie theory involves recursive relations for Bessel or Riccati-Bessel functions. Canonical recommendations prescribe using both upward and downward recursions for different types of functions. This makes the computational algorithm rather cumbersome. We have justified here the procedure using the upward recursions only, whose results are as stable as the canonical recommendations.","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124213027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Covalency of Ions in Lead-Free Perovskite-Type Dielectric Oxides","authors":"N. Takesue, K. Ishibashi, K. Asakura","doi":"10.1063/1.5000584","DOIUrl":"https://doi.org/10.1063/1.5000584","url":null,"abstract":"Electronic states of ions in lead-free perovskite-type dielectric oxides have been investigated with a first-principle cluster calculation. For this calculation a double-perovskite cluster model based upon the simple cubic ABO3 was used; A and B are both the cations, and O is the oxygen anion. Systematic variations of ionic species for A and B, and lengths of the model cube edge were given to the model. Results of charge transfers of the ions show that their magnitudes depend on the edge length; the lager length leads to the higher transfer magnitude. This tendency implies spatial tolerance of the ions to the clusters, and are expected to correlate with electric polarizability and dipole reversibility of this kind of oxides. The density of states and the overlap population indicate that the higher cation valence causes the higher covalency of the anions. Considering all results together provides us an idea to obtain lead-free high-performance ferroelectrics, as high as the lead-based solid solutions.","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131803591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Confinement Effect in Spherical Inhomogeneous Quantum Dots and Stability of Excitons","authors":"F. Benhaddou, I. Zorkani, A. Jorio","doi":"10.1063/1.4986909","DOIUrl":"https://doi.org/10.1063/1.4986909","url":null,"abstract":"We investigate in this work the quantum confinement effect of exciton in spherical inhomogeneous quantum dots IQDs. The spherical core is enveloped by two shells. The inner shell is a semiconductor characterized by a small band-gap. The core and the outer shell are the same semiconductor characterized by a large band-gap. So there is a significant gap-offset creating a deep potential well where the excitons are localized and strongly confined. We have adopted the Ritz variational method to calculate numerically the excitonic ground state energy and its binding energy in the strong, moderate and low confinement regimes. The results show that the Ritz variational method is in good agreement with the perturbation method in strong confinement. There is a double confinement effect and dual control. The calculation checks the effective Rydberg R* at the asymptotic limit of bulk semiconductor when the thickness takes very large values. The excitonic binding energy increases, Thus giving the excitons a high stabi...","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125231635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Precise ab initio Calculations of the 3D Transition-Metal Clusters: Sc2","authors":"I. Kaplan, U. Miranda","doi":"10.1063/1.3584201","DOIUrl":"https://doi.org/10.1063/1.3584201","url":null,"abstract":"The ground 5Σu− state of Sc2 was studied by the valence multireference configuration interaction method with single and double excitations plus Davidson correction (MRCISD(+Q)) at the complete basis set limit. The calculations were made under C2v symmetry restrictions, which allowed us to obtain at the dissociation limit the Sc atoms in different states (in all previous studies of Sc2 the D2h symmetry group was employed). From the Mulliken population analysis and energy calculations follows that in the ground state Sc2 dissociates in one Sc in the ground state and the other in the second excited quartet state, 4Fu. The corrected parameters of the ground potential curve are the following: Re = 5.2 bohr, De = 50.37 kcal/mol, and ωe = 234.5 cm-1. The dissociation energy in respect to the dissociation on two Sc in the ground states was estimated as De = 9.98 kcal/mol.","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121420294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}