A. Andreev, T. Andreeva, I. Kompanets, S. Torgova, N. Zalyapin
{"title":"无螺旋铁电液晶中定向重定向和光调制的动力学研究","authors":"A. Andreev, T. Andreeva, I. Kompanets, S. Torgova, N. Zalyapin","doi":"10.1063/1.5051411","DOIUrl":null,"url":null,"abstract":"The dynamics of the director reorientation in new helix-free ferroelectric liquid crystals (FLC) is considered. These materials are specially designed helix-free FLCs with a rather low value of the spontaneous polarization (less than 50 nC/cm2) and high viscosity (from 0.3 to 1.0 Poise), which are characterized by a spatial periodic deformation of smectic layers in the absence of an electric field. FLC director reorientation is due to the motion of solitons – spatially localized waves of a stationary profile that arise in an alternating electric field upon transition to the Maxwellian mechanism of energy dissipation. A theoretical model is proposed for describing the spatial-periodic deformation of FLC and reorientation of its director. The frequency and field experimental dependences of FLC electro-optical response time are presented for the modulation of the light transmission with fastest response among all LC materials. The novel helix-free FLC are able to efficiently modulate the visible and near IR radiation at frequencies up to 7 kHz at the electric field strength of the order of 1-2 V/μm. The conditions for the continuous hysteresis-free electro-optical response were determined, and such a response was realized for the first time in the frequency range up to 6 kHz.","PeriodicalId":220310,"journal":{"name":"Prime Archives in Physical Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamics of the Director Reorientation and Light Modulation in Helix-Free Ferroelectric Liquid Crystals\",\"authors\":\"A. Andreev, T. Andreeva, I. Kompanets, S. Torgova, N. Zalyapin\",\"doi\":\"10.1063/1.5051411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of the director reorientation in new helix-free ferroelectric liquid crystals (FLC) is considered. These materials are specially designed helix-free FLCs with a rather low value of the spontaneous polarization (less than 50 nC/cm2) and high viscosity (from 0.3 to 1.0 Poise), which are characterized by a spatial periodic deformation of smectic layers in the absence of an electric field. FLC director reorientation is due to the motion of solitons – spatially localized waves of a stationary profile that arise in an alternating electric field upon transition to the Maxwellian mechanism of energy dissipation. A theoretical model is proposed for describing the spatial-periodic deformation of FLC and reorientation of its director. The frequency and field experimental dependences of FLC electro-optical response time are presented for the modulation of the light transmission with fastest response among all LC materials. The novel helix-free FLC are able to efficiently modulate the visible and near IR radiation at frequencies up to 7 kHz at the electric field strength of the order of 1-2 V/μm. The conditions for the continuous hysteresis-free electro-optical response were determined, and such a response was realized for the first time in the frequency range up to 6 kHz.\",\"PeriodicalId\":220310,\"journal\":{\"name\":\"Prime Archives in Physical Sciences\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prime Archives in Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5051411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prime Archives in Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5051411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamics of the Director Reorientation and Light Modulation in Helix-Free Ferroelectric Liquid Crystals
The dynamics of the director reorientation in new helix-free ferroelectric liquid crystals (FLC) is considered. These materials are specially designed helix-free FLCs with a rather low value of the spontaneous polarization (less than 50 nC/cm2) and high viscosity (from 0.3 to 1.0 Poise), which are characterized by a spatial periodic deformation of smectic layers in the absence of an electric field. FLC director reorientation is due to the motion of solitons – spatially localized waves of a stationary profile that arise in an alternating electric field upon transition to the Maxwellian mechanism of energy dissipation. A theoretical model is proposed for describing the spatial-periodic deformation of FLC and reorientation of its director. The frequency and field experimental dependences of FLC electro-optical response time are presented for the modulation of the light transmission with fastest response among all LC materials. The novel helix-free FLC are able to efficiently modulate the visible and near IR radiation at frequencies up to 7 kHz at the electric field strength of the order of 1-2 V/μm. The conditions for the continuous hysteresis-free electro-optical response were determined, and such a response was realized for the first time in the frequency range up to 6 kHz.