{"title":"Oligomerization of Monoamine Transporters.","authors":"Arnav Paul, Diwakar Shukla","doi":"10.1007/978-3-031-58843-3_7","DOIUrl":"https://doi.org/10.1007/978-3-031-58843-3_7","url":null,"abstract":"<p><p>Transporters of the monoamine transporter (MAT) family regulate the uptake of important neurotransmitters like dopamine, serotonin, and norepinephrine. The MAT family functions using the electrochemical gradient of ions across the membrane and comprises three transporters, dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). MAT transporters have been observed to exist in monomeric states to higher-order oligomeric states. Structural features, allosteric modulation, and lipid environment regulate the oligomerization of MAT transporters. NET and SERT oligomerization are regulated by levels of PIP2 present in the membrane. The kink present in TM12 in the MAT family is crucial for dimer interface formation. Allosteric modulation in the dimer interface hinders dimer formation. Oligomerization also influences the transporters' function, trafficking, and regulation. This chapter will focus on recent studies on monoamine transporters and discuss the factors affecting their oligomerization and its impact on their function.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"104 ","pages":"119-137"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kathleen Mikkelsen, Maria Trapali, Vasso Apostolopoulos
{"title":"Role of Vitamin B in Healthy Ageing and Disease.","authors":"Kathleen Mikkelsen, Maria Trapali, Vasso Apostolopoulos","doi":"10.1007/978-3-031-66768-8_12","DOIUrl":"https://doi.org/10.1007/978-3-031-66768-8_12","url":null,"abstract":"<p><p>B vitamin complex consist of vitamins B1, B2, B5, B6, B9, B12 and is pivotal for overall health, influencing vital functions such as, energy metabolism, DNA maintenance, and healthy immune system. Inadequate B vitamin levels are associated with various health issues, including neurocognitive problems, immune imbalances, and inflammation. In ageing individuals, deficiencies in B vitamins increase the risk of cardiovascular ailments, stroke, cognitive disorders, neurodegeneration, mental health issues, and methylation-related disorders. These result primarily due to changes in glycation, mitochondria, and oxidative stress. Thus, ensuring optimal vitamin B levels in the ageing population may be beneficial in preventing such age-related diseases. In this chapter we discuss the extensive role of B vitamins in the ageing process.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"107 ","pages":"245-268"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María I Daudén, Mar Pérez-Ruiz, José L Carrascosa, Ana Cuervo
{"title":"Nucleic Acid Packaging in Viruses.","authors":"María I Daudén, Mar Pérez-Ruiz, José L Carrascosa, Ana Cuervo","doi":"10.1007/978-3-031-65187-8_13","DOIUrl":"https://doi.org/10.1007/978-3-031-65187-8_13","url":null,"abstract":"<p><p>Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid. In this chapter we will first give an overview of the different strategies used for genome packaging to discuss later some specific virus models where the structures of the main proteins involved are presented and the biophysics underlying the packaging mechanism are discussed.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"105 ","pages":"469-502"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142910764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maturation of Viruses.","authors":"Gabriela N Condezo, Carmen San Martín","doi":"10.1007/978-3-031-65187-8_14","DOIUrl":"https://doi.org/10.1007/978-3-031-65187-8_14","url":null,"abstract":"<p><p>Viral genomes are transported between cells using various structural solutions such as spherical or filamentous protein cages, alone or in combination with lipid envelopes, in assemblies of varying complexity. Morphogenesis of the new infectious particles (virions) encompasses capsid assembly from individual components (proteins, and membranes when required), genome packaging, and maturation. This final step is crucial for full infectivity. During maturation, structural and physical changes prepare the viral particles for delivering their genome into cells at the right time and location. The virion must be stabilized for travel across harsh extracellular conditions, while enabling disassembly for genome exposure to replication and translation machineries. That is, maturation has to produce metastable particles. Common maturation strategies include structural reordering, controlled proteolysis, or posttranslational modifications. Here we outline the maturation process in representative members of the six realms proposed by the latest virus taxonomic classification.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"105 ","pages":"503-531"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142910810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dorothy E D P Hawkins, Owen C Godwin, Alfred A Antson
{"title":"Viral Genomic DNA Packaging Machinery.","authors":"Dorothy E D P Hawkins, Owen C Godwin, Alfred A Antson","doi":"10.1007/978-3-031-58843-3_9","DOIUrl":"10.1007/978-3-031-58843-3_9","url":null,"abstract":"<p><p>Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"104 ","pages":"181-205"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadia Izadi-Pruneyre, Yasaman Karami, Michael Nilges
{"title":"Structure and Dynamics of Type 4a Pili and Type 2 Secretion System Endopili.","authors":"Nadia Izadi-Pruneyre, Yasaman Karami, Michael Nilges","doi":"10.1007/978-3-031-58843-3_21","DOIUrl":"10.1007/978-3-031-58843-3_21","url":null,"abstract":"<p><p>Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"104 ","pages":"549-563"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Copper Efflux Regulator (CueR).","authors":"Yangbo Hu, Bin Liu","doi":"10.1007/978-3-031-58843-3_2","DOIUrl":"https://doi.org/10.1007/978-3-031-58843-3_2","url":null,"abstract":"<p><p>The copper efflux regulator (CueR) is a classical member of the MerR family of metalloregulators and is common in gram-negative bacteria. Through its C-terminal effector-binding domain, CueR senses cytoplasmic copper ions to regulate the transcription of genes contributing to copper homeostasis, an essential process for survival of all cells. In this chapter, we review the regulatory roles of CueR in the model organism Escherichia coli and the mechanisms for CueR in copper binding, DNA recognition, and interplay with RNA polymerase in regulating transcription. In light of biochemical and structural analyses, we provide molecular details for how CueR represses transcription in the absence of copper ions, how copper ions mediate CueR conformational change to form holo CueR, and how CueR bends and twists promoter DNA to activate transcription. We also characterize the functional domains and key residues involved in these processes. Since CueR is a representative member of the MerR family, elucidating its regulatory mechanisms could help to understand the CueR-like regulators in other organisms and facilitate the understanding of other metalloregulators in the same family.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"104 ","pages":"17-31"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oligomeric Structure of Yeast and Other Invertases Governs Specificity.","authors":"Elena Jiménez-Ortega, Julia Sanz-Aparicio","doi":"10.1007/978-3-031-58843-3_19","DOIUrl":"https://doi.org/10.1007/978-3-031-58843-3_19","url":null,"abstract":"<p><p>Invertases, or β-fructofuranosidases, are metabolic enzymes widely distributed among plants and microorganisms that hydrolyze sucrose and release fructose from various substrates. Invertase was one of the earliest discovered enzymes, first investigated in the mid-nineteenth century, becoming a classical model used in the primary biochemical studies on protein synthesis, activity, and the secretion of glycoproteins. However, it was not until 20 years ago that a member of this family of enzymes was structurally characterized, showing a bimodular arrangement with a β-propeller catalytic domain, and a β-sandwich domain with unknown function. Since then, many studies on related plant and fungal enzymes have revealed them as basically monomeric. By contrast, all yeast enzymes in this family that have been characterized so far have shown sophisticated oligomeric structures mediated by the non-catalytic domain, which is also involved in substrate binding, and how this assembly determines the particular specificity of each enzyme. In this chapter, we will review the available structures of yeast invertases to elucidate the mechanism regulating oligomer formation and compare them with other reported dimeric invertases in which the oligomeric assembly has no apparent functional implications. In addition, recent work on a new family of invertases with absolute specificity for the α-(1,2)-bond of sucrose found in cyanobacteria and plant invertases is highlighted.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"104 ","pages":"503-530"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NAD<sup>+</sup> Boosting Strategies.","authors":"Jared Rice, Sofie Lautrup, Evandro F Fang","doi":"10.1007/978-3-031-66768-8_4","DOIUrl":"https://doi.org/10.1007/978-3-031-66768-8_4","url":null,"abstract":"<p><p>Nicotinamide adenine dinucleotide (oxidized form, NAD<sup>+</sup>) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD<sup>+</sup> and NADH. NAD<sup>+</sup> is the oxidising coenzyme that is reduced when it picks up electrons. NAD<sup>+</sup> levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD<sup>+</sup> levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD<sup>+</sup> levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD<sup>+</sup>, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD<sup>+</sup> boosting strategies.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"107 ","pages":"63-90"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses.","authors":"Antoni Luque, David Reguera","doi":"10.1007/978-3-031-65187-8_19","DOIUrl":"https://doi.org/10.1007/978-3-031-65187-8_19","url":null,"abstract":"<p><p>All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the viral capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be explained using fundamental physics theories.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"105 ","pages":"693-741"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142910773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}