{"title":"Desalination using spray tower and vapour compression refrigeration system","authors":"S. S. Kumar, A. Mani","doi":"10.1504/IJND.2006.009507","DOIUrl":"https://doi.org/10.1504/IJND.2006.009507","url":null,"abstract":"A desalination system using a spray tower and Vapour Compression Refrigeration (VCR) system is proposed for obtaining fresh water from brackish water. In the spray tower, simultaneous heat and mass transfer take place between the brackish water and air, which results in the evaporation of the brackish water and humidification of the air. Fresh water is obtained from the humidified air by condensing the water vapour using a VCR system. Parametric studies were carried out to study the effect of various operational parameters on the fresh water production rate.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2006-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125291861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seawater feed reverse osmosis preheating appraisal, Part I: leading element performance","authors":"A. Karameldin, M. Saadawy","doi":"10.1504/IJND.2006.009506","DOIUrl":"https://doi.org/10.1504/IJND.2006.009506","url":null,"abstract":"This paper is concerned with the seawater reverse osmosis preheating process, and presents a parametric study of the process. The basic transport equations describing the leading element are exhibited and appraised. The leading element, which governs the whole system performance, is studied and analysed. The incorporated and investigated operating parameters are the feed pressure and the temperature for different feed salt concentrations. In addition, different feed flow rates, effects on permeate flux and permeator salt rejection, together with the permeator recovery, are studied. A seawater membrane of a well-known data, for instance FT30SW380HR, is used to perform the study. The membrane water permeability coefficient Kw is determined and correlated. Furthermore, the membrane salt permeability coefficient Ks from the manufacturer system analysis program (ROSA) is given and discussed. The transport governing equations are programmed in a way that facilitates the achievement of a realistic parametric study. The results showed that the permeate flux increases significantly as the feed pressure increases. Also, it increases significantly as the feed salt concentration decreases, and also as the feed temperature and pressure increase. Meanwhile, the permeator salt rejection increases significantly as the feed pressure increases, and decreases significantly as the feed temperature increases. The study of the leading element of the array showed that there are constraints that must be considered, such as maximum membrane flux, maximum applied feed pressure, maximum feed flow rate and maximum feed temperature. Therefore, to attain the maximum membrane flux, the applied feed pressure must be lowered when the feed temperature is increased. In the case where the feed temperature is increased from 18°C to 45°C, a pressure saving of between 7% and 26% is achieved, according to the feed salt concentration and feed flow rate.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2006-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124326611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct contact membrane distillation for nuclear desalination, Part II: experiments with radioactive solutions","authors":"M. Khayet, J. Mengual, G. Zakrzewska-Trznadel","doi":"10.1504/IJND.2006.009505","DOIUrl":"https://doi.org/10.1504/IJND.2006.009505","url":null,"abstract":"This paper proposes the application of Direct Contact Membrane Distillation (DCMD) coupled with a nuclear reactor for water desalination and for low- and medium-level radioactive liquid waste concentration. Both laboratory and pilot plant experiments were carried out using the membranes reviewed in Part I of this paper. The effects of process parameters on the productivity and quality of DCMD systems are discussed. Distilled water, non-active solutions of inorganic salts and solutions with admixtures of radionuclides and simulated and real radioactive waste samples were used as feed solutions. Employing DCMD for liquid low- and medium-level radioactive waste processing is an alternative to traditional methods used in nuclear technology. The combination of radioactive waste processing and water desalination creates an economical integrated system for water and wastewater management in nuclear power plants.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2006-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133497677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards a desalination initiative using cogeneration with an advanced reactor type and uranium recovered from Moroccan phosphoric acid production","authors":"M. Lung, A. Kossir, Driss Msatef","doi":"10.1504/IJND.2005.007013","DOIUrl":"https://doi.org/10.1504/IJND.2005.007013","url":null,"abstract":"Morocco is known to be among the first few countries to produce phosphate and phosphoric acid. Moroccan phosphate contains substantial amounts of uranium. This uranium can be recovered from the phosphate ore as a by-product during the production of phosphoric acid. Uranium extraction processes linked with phosphoric acid fabrication have been used industrially in some countries. This is done mainly by solvent extraction. Although, the present price of uranium is low in the international market, such uranium recovery could be considered as a side product of phosphoric acid production. The price of uranium has a very small impact on the cost of nuclear energy obtained from it. This paper focuses on the extraction of uranium salt from phosphate rock. If uranium is recovered in Morocco in the proposed manner, it could serve as feed for a number of nuclear power plants. The natural uranium product would have to be either enriched or blended as mixed-oxide fuel to manufacture adequate nuclear fuel. Part of this fuel would feed a desalination initiative using a high temperature reactor of the new generation, chosen for its intrinsic safety, sturdiness, ease of maintenance, thermodynamic characteristics and long fuel life between reloads, that is, good economy. Αn international cooperation based on commercial contract schemes would concern: the general project and uranium extraction; uranium enrichment and fuel fabrication services; the nuclear power plant; and the desalination plant. This paper presents the overall feasibility of the general project with some quantitative preliminary figures and cost estimates.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124083640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A preliminary economic feasibility assessment of nuclear desalination in Madura Island","authors":"Shang-Hee Kim, Y. Hwang, T. Konishi, H. Hastowo","doi":"10.1504/IJND.2005.007017","DOIUrl":"https://doi.org/10.1504/IJND.2005.007017","url":null,"abstract":"A joint study between KAERI and BATAN, which is entitled \"A preliminary economic feasibility assessment of nuclear desalination in Madura Island\", is being conducted under the framework of the Interregional Technical Cooperation Project of IAEA, signed on Oct. 10, 2001 at IAEA. The duration of the project is January 2002 to December 2004. An economic feasibility of nuclear desalination using system-integrated modular advanced reactor (SMART), which will provide Madura Island with electricity and potable water and also support industrialisation and tourism, will be assessed during the project. The scope of this joint study includes the analyses for the short- and long-term energy and water demand as well as the supply plan for Madura Island, evaluation of the site characteristics, environmental impacts and health aspects, technical and economic evaluation of SMART and its desalination system, including the feasibility of its being identified on the Madura Island. KAERI and BATAN are cooperating in conducting a joint study, and IAEA provides technical support and a review of the study products. This paper presents the interim results of the joint study by focussing on the technical and economic aspects of nuclear desalination using SMART in Madura Island.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116961099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Siting of nuclear desalination plants in Saudi Arabia: a seismic study","authors":"M. Aljohani, A. Abdul-Fattah, A. Almarshad","doi":"10.1504/IJND.2005.007019","DOIUrl":"https://doi.org/10.1504/IJND.2005.007019","url":null,"abstract":"This paper presents the selection criteria generally and seismic criteria specifically to select a suitable site in Saudi Arabia for a nuclear desalination plant. These criteria include geological, meteorological, cooling water supply discharge, transport infrastructure, population, electric grid, water network capacity, environmental impact and airport movement. The seismicity of the Arabian peninsula for the locations of seismic activity along the Red Sea and the Arabian Gulf coastlines from 1973 to 2000 was studied carefully. This study included towns and locations along the east and west coastlines and their distances from the seismic event site. The results showed that Rabigh City along the west coast of Saudi Arabia is a good site to build a nuclear desalination plant. This is because of the following reasons: good seismic stability; good weather statistics; no flooding; mild wave conditions; good supply and discharge; good transportation infrastructure; low population area; very close to the huge electric grid.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127051746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prospects of nuclear desalination in Morocco","authors":"M. Tabet","doi":"10.1504/IJND.2005.007012","DOIUrl":"https://doi.org/10.1504/IJND.2005.007012","url":null,"abstract":"In the last few years Morocco has faced a continuous series of dry seasons, which has put a great stress on its limited water resources. Hence, for some time now Morocco has been considering desalinating seawater to supply fresh water to some areas. In the early 1980's, due to limited energy resources, Morocco was obliged to consider other alternatives to meet its energy demands. A feasibility study for the introduction of a nuclear power plant into the national electrical grid was launched. Even though the study showed that the commercially proven, large size reactors could not be integrated into the grid due to their limited capacity, the national electrical utility continues to pursue its efforts to introduce nuclear energy into the country. Presently, the feasibility study is being updated and a bid invitation specification is being prepared with the help of the IAEA experts. In response to the increasing need for energy and water, Morocco and some North African countries participated in the IAEA regional project on the feasibility study on using nuclear energy for seawater desalination. Subsequently, Morocco carried out a feasibility study for the construction of a demonstration plant for seawater desalination using a 10 MW Nuclear Heating Reactor with China and IAEA. As part of its interest in nuclear energy, Morocco is setting up the nuclear infrastructure that could help in the implementation of the nuclear power programme. The construction of a nuclear research centre which is to be commissioned in a couple of years, and the establishment of the nuclear safety authority and the radiation protection authority are part of the programme.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126266470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct contact membrane distillation for nuclear desalination. Part I: Review of membranes used in membrane distillation and methods for their characterisation","authors":"M. Khayet, J. Mengual, G. Zakrzewska-Trznadel","doi":"10.1504/IJND.2005.007020","DOIUrl":"https://doi.org/10.1504/IJND.2005.007020","url":null,"abstract":"Membrane distillation (MD) is a relatively novel membrane technology considered by the researchers as a potential method for seawater desalination. In the first issue of this journal, the possibility of nuclear desalination by MD was discussed comparing various MD configurations. The present paper firstly reviews the membranes used in MD and the methods of their characterisation, among them wet/dry flow method, gas permeation test, scanning electron microscopy, field emission scanning electron microscopy and atomic force microscopy. The membrane parameters, which have to be known before selection of the membranes for some specific applications such as liquid entry pressure of water, pore size, pore size distribution, porosity and pore tortuosity, were determined. The knowledge on membranes themselves, membrane materials and morphology is very important for engineering of polymer barriers for MD and development of industrial membrane units. The availability of the industrial MD modules is up to now one of the limitations for further process implementation.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115523154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nuclear desalination: harnessing the seas for development of coastal areas of Pakistan","authors":"M. Ayub, W. M. Butt","doi":"10.1504/IJND.2005.007018","DOIUrl":"https://doi.org/10.1504/IJND.2005.007018","url":null,"abstract":"Pakistan has a population of 140 million with more than 30% of the population living in cities and towns. Karachi, the major port city of the country, is the most densely populated with a population crossing the 11 million mark. The city receives 435 MGD of drinking water from the River Indus and other sources. However, the net demand for the year 2000 was 594 MGD thus there is a gap of 159 MGD in demand and supply. Statistics show that the water demand in Karachi is increasing at the rate of 100 MGD every five years. The coastal belt of the country extends to 1046 sq. km. Of this, 930 km is from the Karachi to Gwader region in the province of Baluchistan. Most of the coastal areas lie outside the monsoon system of weather and therefore the climate is extremely dry. The annual rainfall in this belt is about 15 cms. Therefore, fresh water availability is a major factor for development of the coastal belt of Pakistan. In the wake of the looming water crisis it is becoming increasingly clear that all available and appropriate technologies, including nuclear and related technologies, have to be used for the sustainable development and management of freshwater resources in Pakistan. One particular approach is the desalination of seawater, and countries are increasing their capacity to harness the seas for tapping fresh water. The prospects of using nuclear energy for seawater desalination on a large scale are attractive since desalination is an energy intensive process. Pakistan Atomic Energy Commission (PAEC) is planning to actively participate in the activities of IAEA in the field of nuclear desalination by offering one of its nuclear power plants for coupling a demonstration nuclear desalination plant. Karachi Nuclear Power Plant (KANUPP), which is the country's first nuclear plant has been successfully operating for the last 30 years. This plant is proposed to be used as a potential site for installation of a demonstration nuclear desalination plant. KANUPP is already operating a Sea Water Reverse Osmosis (SWRO) plant to meet its operating requirements, contributing to its ultimate heat sink. The experience gained in the installation and commissioning of the RO plant will be very useful for the proposed nuclear desalination plant. The objective of this paper is to present the work done by PAEC in preparing the engineering feasibility for coupling a 1MGD demonstration nuclear desalination plant with KANUPP. The paper discusses in detail the criteria for selection of the most appropriate thermal desalting process, capacity of the plant and the coupling arrangement with the existing power plant without disturbing the normal operation of KANUPP.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124512879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in desalination technology","authors":"Tom M. Pankratz","doi":"10.1504/IJND.2005.007015","DOIUrl":"https://doi.org/10.1504/IJND.2005.007015","url":null,"abstract":"Seawater desalination has been the cornerstone of the Middle East's water supply strategy since the mid-1950s, and most of the installed desalination capacity is still provided by multistage flash evaporators. But, desalination is changing. In fact, the term \"desalination\" is no longer limited to seawater applications; desalination technologies are now routinely employed to desalinate brackish groundwater and repurify municipal effluents. Recent advances in desalination technology have simultaneously reduced costs while dramatically improving performance and reliability to the point where desalination technologies now compete with \"conventional\" treatment processes in many applications. New commercial strategies and a realisation of the economies-of-scale have led to further improvements in plant economics, and an increase in the size of plants now being developed and constructed. This presentation reviews advances in membrane and membrane pretreatment systems, energy recovery devices, materials of construction, hybrid process configurations, increased unit capacities, and the use of public-private partnerships; all of which have led to reduced capital and operating costs, enabling desalination to be economically competitive with traditional treatment options. Advances in desalination technology have resulted in better performances, lower capital and operating costs, and increased application of desalination systems. In the face of increased water shortages and growing costs of \"conventional treatment\", this trend will certainly continue.","PeriodicalId":218810,"journal":{"name":"International Journal of Nuclear Desalination","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116379255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}