Soil Science and Plant Nutrition最新文献

筛选
英文 中文
Nutritional characterization on growth and ionome profiles in Japanese wasabi cultivars ( Eutrema japonicum ) under hydroponics 水培条件下日本山葵(Eutrema japonicum)生长的营养特性及离子特征
4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-11-10 DOI: 10.1080/00380768.2023.2276716
Hiroto Yamashita, Harumi Mihara, Susumu Hisamatsu, Akio Morita, Takashi Ikka
{"title":"Nutritional characterization on growth and ionome profiles in Japanese wasabi cultivars ( <i>Eutrema japonicum</i> ) under hydroponics","authors":"Hiroto Yamashita, Harumi Mihara, Susumu Hisamatsu, Akio Morita, Takashi Ikka","doi":"10.1080/00380768.2023.2276716","DOIUrl":"https://doi.org/10.1080/00380768.2023.2276716","url":null,"abstract":"ABSTRACTJapanese wasabi is traditionally cultivated in terraced fields with running stream water conditions which typically produce a high-quality of yield. Previous studies have explored some of the effects of water nutrient status under such conditions; however, the relationship between water nutrient status in these cultivation conditions and the growth and quality of wasabi is still completely unknown. We evaluated the effects of nutrient strength, inorganic nitrogen sources, and pH of the medium on the growth of wasabi plants. Then, we analyzed the photosynthetic capacity and the ionomes of two major Japanese wasabi cultivars (‘Onimidori,’ an early-growing green-stem type; and ‘Mazuma No.1,’ a late-growing red-stem type) grown under a range of pH conditions. These experiments were conducted using a hydroponic system. Wasabi plants showed the best shoot and root growth in 1/10- and 1/2-strength Hoagland’s solution with a 50:50 ratio of NH4-N:NO3-N. On the basis of the accumulation patterns of NO3−, amino acids, and chlorophylls, the 1/10-strength nutrient solution provided optimal conditions for wasabi growth. For both wasabi cultivars, the best shoot and root growth was in medium at pH 6.0. The photosynthetic capacity of ‘Onimidori’ was greater than that of ‘Mazuma No.1,’ suggesting that this may contribute to the faster growth of ‘Onimidori.’ Ionome analyses revealed tissue-specific mineral accumulation patterns and their differences among different pH conditions and between the two cultivars. Ionome-based multiple-regression analysis revealed a relationship between element concentration profiles in the wasabi plants, especially those in root, and the shoot growth. Wasabi plants are ammonium-sensitive and nitrate-preferring plants, in addition to relatively low nutrient requirements for optimal growth. The results of this study describe the basic nutritional characteristics of wasabi plants. These findings represent an important step toward optimizing fertilization to control wasabi quality and growth in the traditional flooded cultivation system.KEY WORDS: Ionomenitrogenphphotosynthesiswasabi AcknowledgmentsWe thank Jennifer Smith, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/00380768.2023.2276716Additional informationFundingThis work was supported by Kurita Water and Environment Foundation, number 19B001 (T.I.) and Urakami Foundation for Food and Food Culture Promotion (T.I.).","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment to the Reviewers 鸣谢审稿人
IF 2 4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-11-02 DOI: 10.1080/00380768.2023.2279858
{"title":"Acknowledgment to the Reviewers","authors":"","doi":"10.1080/00380768.2023.2279858","DOIUrl":"https://doi.org/10.1080/00380768.2023.2279858","url":null,"abstract":"","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139290306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstracts of Nippon Dojo-Hiryogaku Zasshi 《日本道州-平日游》摘要
4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-10-30 DOI: 10.1080/00380768.2023.2269519
{"title":"Abstracts of Nippon Dojo-Hiryogaku Zasshi","authors":"","doi":"10.1080/00380768.2023.2269519","DOIUrl":"https://doi.org/10.1080/00380768.2023.2269519","url":null,"abstract":"","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstracts of Nippon Dojo-Hiryogaku Zasshi 《日本道州-平日游》摘要
4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-10-30 DOI: 10.1080/00380768.2023.2269518
{"title":"Abstracts of Nippon Dojo-Hiryogaku Zasshi","authors":"","doi":"10.1080/00380768.2023.2269518","DOIUrl":"https://doi.org/10.1080/00380768.2023.2269518","url":null,"abstract":"","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136023512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of alkali- and oxidation-modified biochars derived from water hyacinth for ammonium adsorption capacity 水葫芦碱改性和氧化改性生物炭对铵的吸附能力增强
4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-10-28 DOI: 10.1080/00380768.2023.2272626
Yudai Kohira, Shinichi Akizuki, Fekremariam Asargew Mihretie, Desalew Fentie Meselu, Solomon Addisu Legesse, Shinjiro Sato
{"title":"Enhancement of alkali- and oxidation-modified biochars derived from water hyacinth for ammonium adsorption capacity","authors":"Yudai Kohira, Shinichi Akizuki, Fekremariam Asargew Mihretie, Desalew Fentie Meselu, Solomon Addisu Legesse, Shinjiro Sato","doi":"10.1080/00380768.2023.2272626","DOIUrl":"https://doi.org/10.1080/00380768.2023.2272626","url":null,"abstract":"ABSTRACTWastewater containing high concentrations of ammonium-nitrogen (NH4+-N) is considered a major concern because its untreated discharge has a variety of adverse effects on the environment and human health. Adsorption using biochars is an easy and cost-effective wastewater treatment method. However, aquatic plants such as water hyacinth for biochar feedstock are considered unsuitable for adsorbent use due to limited NH4+-N adsorption capacity. In this study, biochar made from water hyacinth was modified with potassium hydroxide (KOH) and hydrogen peroxide (H2O2) to obtain highly efficient adsorbent. This study aimed to enhance NH4+-N adsorption capacity by KOH- and H2O2-treatments and identify NH4+-N adsorption mechanism of the modified biochars derived from water hyacinth. The NH4+-N adsorption of all biochars was dependent on the initial solution pH increasing from pH 2 to 4, then relatively constant from pH 4 to 8. Pseudo-second-order model and Langmuir model were found to be the best fit for NH4+-N adsorption data. The maximum NH4+-N adsorption capacity of biochars increased about 8 times (17.1 mg g−1) and 10 times (21.5 mg g−1) after KOH- and H2O2-modification, respectively, compared to pristine biochar (2.14 mg g−1). The main NH4+-N adsorption mechanisms were suggested as cation exchange for both biochars particularly KOH-modified biochar, and hydrogen bonding by oxygen-containing surface functional groups for H2O2-modified biochar. This study suggested that aquatic plant-based biochar, which has been considered difficult to use, had potential as a promising alternative adsorbent for removing NH4+-N from wastewater through modification.KEY WORDS: Adsorption isothermadsorption kineticscarboxylic groupcation exchange capacityFTIR Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Science and Technology Research Partnership for Sustainable Development [JPMJSA2005].","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136158676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of microtopography on within-field spatial variation of inherent soil properties in Andosols of Tokachi district, Hokkaido 微地形对北海道德胜地区安土固有土壤性质场内空间变异的影响
4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-10-25 DOI: 10.1080/00380768.2023.2270640
Elton Amadeus Francisco, Rintaro Kinoshita, Vilayphone Sourideth, Hiroaki Shimada, Akari Kishimoto, Yosuke Higashi, Masayuki Tani
{"title":"Effects of microtopography on within-field spatial variation of inherent soil properties in Andosols of Tokachi district, Hokkaido","authors":"Elton Amadeus Francisco, Rintaro Kinoshita, Vilayphone Sourideth, Hiroaki Shimada, Akari Kishimoto, Yosuke Higashi, Masayuki Tani","doi":"10.1080/00380768.2023.2270640","DOIUrl":"https://doi.org/10.1080/00380768.2023.2270640","url":null,"abstract":"","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135169073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal analysis of soil loss in cold climate upland farming watersheds using SWAT: case study of Tokoro River watershed, Hokkaido, Japan 基于SWAT的寒气候旱地农业流域土壤流失时空分析——以日本北海道东京都河流域为例
4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-10-06 DOI: 10.1080/00380768.2023.2264334
Kunihito Mihara, Kanta Kuramochi, Yo Toma, Ryusuke Hatano
{"title":"Spatiotemporal analysis of soil loss in cold climate upland farming watersheds using SWAT: case study of Tokoro River watershed, Hokkaido, Japan","authors":"Kunihito Mihara, Kanta Kuramochi, Yo Toma, Ryusuke Hatano","doi":"10.1080/00380768.2023.2264334","DOIUrl":"https://doi.org/10.1080/00380768.2023.2264334","url":null,"abstract":"ABSTRACTSevere soil erosion can cause both loss of ecosystem services and riverine environmental contaminations. Thus, understanding the spatiotemporal characteristics of soil loss at the watershed scale is critical for sustainable management of land and water resources. The primary objective of this study was to estimate the spatiotemporal variation in water runoff and soil loss in the Tokoro River watershed (TRW), Hokkaido, Japan. Assuming that agricultural land, which becomes bare depending on the season, is the main source of erosion and that large soil losses occur especially during the snowmelt/freeze-thaw period, we quantified and analyzed the mechanism of soil loss using the Soil and Water Assessment Tool 2012 (SWAT2012). Simulation results based on a publicly available dataset showed that croplands were the primary source of stream sediment load, contributing to 86% of the total soil loss. Furthermore, the soil loss rate was high (241.1–270.9 Mg km−2 yr−1) in sub-basins with a higher percentage of cropland, especially sloped croplands. These sub-basins had a higher risk of productivity loss due to intense erosion and river contamination by muddy runoff. Soil loss mainly occurred in early spring (March and April) and late summer (August – October), accounting for 36% and 45% of the annual soil loss, respectively. Vegetation removal by harvest exacerbated soil loss in October. In March, soil drainage was suppressed by frozen soil, resulting in high surface runoff and soil loss. Therefore, surface runoff when the soil was frozen was considered an important driver of soil loss. The estimation error of the stream sediment loads out of the 95% prediction uncertainty accounted for 26% of the total absolute error. This error could be attributed a lack of certainty in the observation data of high stream sediment loads and the model’s underestimation of water runoff during intense snowmelt and rainfall events.KEYWORDS: Water erosionSWAT modelfrozen groundsnowmeltagriculture AcknowledgmentsThis research was conducted with a financial support from JST SPRING (Grant Number: JPMJSP2119).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by JST SPRING [Grant Number: JPMJSP2119].","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135347468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of iron-reducing and iron-oxidizing bacterial communities in the rice rhizosphere of iron-toxic paddy field: a case study in Burkina Faso, West Africa 铁中毒稻田水稻根际铁还原和铁氧化细菌群落调查:以西非布基纳法索为例
4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-09-22 DOI: 10.1080/00380768.2023.2259426
Takeshi Watanabe, Kento Kato, Kohei Kawaguchi, Toshiya Oga, Yoshinori Ban, Cécile Harmonie Otoidobiga, Adama Sawadogo, Issa Wonni, Léonard S. Ouedraogo, Jean Didier Zongo, Dayéri Dianou, Susumu Asakawa
{"title":"Investigation of iron-reducing and iron-oxidizing bacterial communities in the rice rhizosphere of iron-toxic paddy field: a case study in Burkina Faso, West Africa","authors":"Takeshi Watanabe, Kento Kato, Kohei Kawaguchi, Toshiya Oga, Yoshinori Ban, Cécile Harmonie Otoidobiga, Adama Sawadogo, Issa Wonni, Léonard S. Ouedraogo, Jean Didier Zongo, Dayéri Dianou, Susumu Asakawa","doi":"10.1080/00380768.2023.2259426","DOIUrl":"https://doi.org/10.1080/00380768.2023.2259426","url":null,"abstract":"ABSTRACTIron (Fe) toxicity in rice is one of the serious problems in some paddy fields in West African areas. Microbial community structures involved in the redox cycle of Fe have not been revealed in the Fe-toxic paddy fields. The present study investigated the bacterial community structure and the abundance of Gallionellaceae, Geobacteraceae, and Anaeromyxobacteraceae, as the representative indicator bacteria of Fe oxidizers and reducers, in the bulk and rhizosphere soils and rice roots of a Fe-toxic paddy field in Burkina Faso (BF)in 2017–2019. Thosein a paddy field in Anjo, Japan (AN) were also analyzed for comparison. The amplicon sequencing analysis revealed that the BF rhizosphere soil was characterized by typical anaerobic bacterial groups like Firmicutes and Deltaproteobacteria, including several potential Fe reducers. The relative abundance of Gallionellaceae, lithotrophic Fe oxidizers, in the BF rice roots was significantly lower than that in the AN rice roots. Quantitative PCR analysis showed that the ratios of Gallionellaceae to Geobacteraceae and to Anaeromyxobacteraceae were higher in the rice roots than in the soils irrespective of the fields. However, the ratios of Gallionellaceae to Geobacteraceae were lower in the BF soils and roots than in the AN soils and roots. The ratios of Gallionellaceae to Anaeromyxobacteraceae in the BF soils were also lower than those in the AN soils. These findings indicated the relative predominance of Geobacter- and Anaeromyxobacter-related Fe reducers over Gallionellaceae-related Fe oxidizers in the rice rhizosphere of the BF field, corresponding well to the circumstances of Fe-toxic soil: higher Fe(II) amounts in the soil. Since Fe(II)-oxidizing activity at rice roots is an important factor as a primary defense system against Fe(II) in the soil solution, the ratios of Gallionellaceae to Geobacteraceae and to Anaeromyxobacteraceae may serve as an indicator of potential Fe(II)-oxidizing activity of rice rhizosphere. Further studies focusing on the activity of Fe oxidizers and Fe reducers at rice roots under effective cultivation practices and in various types of Fe-toxic paddy fields will help to promote a better understanding of the Fe-toxic soil circumstances and to establish sustainable rice cultivation in the Fe-toxic soils.KEYWORDS: Iron-oxidizing bacteriairon-reducing bacteriairon toxicitypaddy fieldrhizosphere AcknowledgmentsWe thank Kojima H. of Nagoya University for the measurement of Fed, Feo, and CEC, and Bagayogo A., Zougrana S., and Kiemde S. of the Institute of Environment and Agricultural Research for their help of the sampling and experiments in Burkina Faso.Disclosure statementNo potential conflict of interest was reported by the authors.Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/00380768.2023.2259426.Additional informationFundingThe present study was supported by the Grant-in-Aid from the JSPS KAKENHI [17H04619, 18K05372, a","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136062273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of slow adsorption of phosphate on its transport during the infiltration process in saturated agricultural soils 饱和农业土壤中磷酸盐的缓慢吸附对其入渗过程中转运的影响
4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-09-14 DOI: 10.1080/00380768.2023.2258520
Rina Tanaka, Takehide Hama, Kimihito Nakamura, Kenji Sato, Risa Wakita
{"title":"The effect of slow adsorption of phosphate on its transport during the infiltration process in saturated agricultural soils","authors":"Rina Tanaka, Takehide Hama, Kimihito Nakamura, Kenji Sato, Risa Wakita","doi":"10.1080/00380768.2023.2258520","DOIUrl":"https://doi.org/10.1080/00380768.2023.2258520","url":null,"abstract":"ABSTRACTAssessment of phosphorus (P)-infiltrating croplands is essential for the preservation of the water environment. It has been pointed out that a huge discrepancy lies in the different evaluation methods of P adsorption, such as batch experiments and column experiments, which makes it difficult to demonstrate P mobility under flow conditions. The objective of this study was to evaluate the applicability of the convective-dispersion equation using the parameters of the Langmuir-type isotherm obtained from batch experiments with different reaction times: the adsorption capacity of soil (qmax) = 0.112 (g kg−1) for a Gray lowland soil with 24 h reaction time, qmax = 0.484 (g kg−1) for an Andosol (volcanic ash soil) with 24 h reaction time, and qmax = 1.17 (g kg−1) for an Andosol with 32 d reaction time, for describing P mobility in typical Japanese agricultural soils under fast flow conditions. The breakthrough curves of P infiltrating the soil columns demonstrate nonequilibrium P adsorption by the soil. The chemical nonequilibrium model, with a kinetic adsorption rate of α = 0.40 (Gray lowland soil) and 0.098 (Andosol), succeeded in describing the observations in the column experiments. Compared with Gray lowland soil, which is relatively rich in iron oxide, P mobility was largely affected by kinetic sorption in Andosol, which is relatively rich in allophane. It is suggested that the P adsorption capacity of soils should be evaluated reflecting the soil composition in order to simulate the P mobility under flow conditions. In particular, the slow adsorption (long-lasting adsorption) of P by the soil should be considered in the estimation of the P transport.KEYWORDS: Adsorption isothermAndosolGray lowland soilchemical nonequilibrium modelconvection-dispersion equation AcknowledgmentsWe thank Dr. Takeo Shima (Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization) for providing us with soil samples. This work was supported by JSPS KAKENHI (grant number JP21H02305).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Japan Society for the Promotion of Science [JP21H02305].","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134971021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of simultaneous Rubisco, glyceraldehyde-3-phosphate dehydrogenase, and triosephosphate isomerase overexpression on photosynthesis in rice Rubisco、甘油醛-3-磷酸脱氢酶和三磷酸异构酶同时过表达对水稻光合作用的影响
IF 2 4区 农林科学
Soil Science and Plant Nutrition Pub Date : 2023-09-06 DOI: 10.1080/00380768.2023.2255213
Yuji Suzuki, Mikuri Yamashita, Haruka Takada, Yuki Takegahara-Tamakawa, C. Miyake, A. Makino
{"title":"Effects of simultaneous Rubisco, glyceraldehyde-3-phosphate dehydrogenase, and triosephosphate isomerase overexpression on photosynthesis in rice","authors":"Yuji Suzuki, Mikuri Yamashita, Haruka Takada, Yuki Takegahara-Tamakawa, C. Miyake, A. Makino","doi":"10.1080/00380768.2023.2255213","DOIUrl":"https://doi.org/10.1080/00380768.2023.2255213","url":null,"abstract":"","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88790489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信