SmartMat最新文献

筛选
英文 中文
One‐droplet saliva detection on photonic crystal‐based competitive immunoassay for precise diagnosis of migraine 基于光子晶体竞争免疫分析法的单液滴唾液检测用于偏头痛的精确诊断
SmartMat Pub Date : 2023-11-10 DOI: 10.1002/smm2.1252
Xiaoxue Lin, Jimei Chi, Zewei Lian, Yang Yun, Xu Yang, Xuwei He, Zheng Liu, Shuqing Wang, Wei Zhao, Zihua Gong, Yingyuan Liu, Shuhua Zhang, Deqi Zhai, Siyuan Xie, Yin Sun, Meng Su, Zhao Dong, Shengyuan Yu, Yanlin Song
{"title":"One‐droplet saliva detection on photonic crystal‐based competitive immunoassay for precise diagnosis of migraine","authors":"Xiaoxue Lin, Jimei Chi, Zewei Lian, Yang Yun, Xu Yang, Xuwei He, Zheng Liu, Shuqing Wang, Wei Zhao, Zihua Gong, Yingyuan Liu, Shuhua Zhang, Deqi Zhai, Siyuan Xie, Yin Sun, Meng Su, Zhao Dong, Shengyuan Yu, Yanlin Song","doi":"10.1002/smm2.1252","DOIUrl":"https://doi.org/10.1002/smm2.1252","url":null,"abstract":"Abstract Migraine exhibits a substantial prevalence worldwide. The current diagnostic criteria rests exclusively on clinical characteristics without any objective and reliable means. The calcitonin gene‐related peptide (CGRP), as a biomarker for distinguishing migraine, undergoes swift degradation, featuring a half‐life of under 10 min, which poses a significant challenge to the point‐of‐care testing of CGRP in clinical application. Here, a photonic crystal (PC)‐based biochip has been developed to detect CGRP via the fluorescence competition assay. The chip integrates the functionalities of fluorescence enhancement and hydrophilic–hydrophobic patterning enrichment, enabling rapid and sensitive detection of CGRP. After investigating the optimal enhancement distance of fluorescence near PCs, the chip allows CGRP detection using <30 μL of saliva at room temperature within 10 min. A minimum detection limit of 0.05 pg/mL is achieved. Furthermore, CGRP concentrations in the saliva of 70 subjects have been tested by PC biochips. The results exhibit strong concordance with the enzyme‐linked immunosorbent assay (ELISA), demonstrating a linear correlation coefficient of R 2 of 0.97. This sensitive detection of markers within such a short duration surpasses the capacities of ELISA, which paves the way for establishing a precise diagnostic framework integrating clinical phenotypes and biomarkers for migraine.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"120 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visible and selective gel assembly via covalent click chemistry 通过共价点击化学进行可见和选择性凝胶组装
SmartMat Pub Date : 2023-11-07 DOI: 10.1002/smm2.1251
Yinglin Zheng, Zhihai Ke
{"title":"Visible and selective gel assembly via covalent click chemistry","authors":"Yinglin Zheng, Zhihai Ke","doi":"10.1002/smm2.1251","DOIUrl":"https://doi.org/10.1002/smm2.1251","url":null,"abstract":"Abstract This study marks the birth of visible and selective click covalent assembly. It is achieved by amplifying orthogonal alkyne−azide click chemistry through interfacial multisite interactions between azide/alkyne functionalized polymer hydrogels. Macroscopic assembly of hydrogels via host−guest chemistry or noncovalent interactions such as electrostatic interactions has been reported. Unlike macroscopic supramolecular assembly, here we report visible and selective “click” covalent assembly of hydrogels at the macroscale. LEGO‐like hydrogels modified with alkyne and azide groups, respectively, can click together via the formation of covalent bonds. Monomer concentration‐dependent assembly and selective covalent assembly have been studied. Notably, macroscopic gel assembly clearly elucidates click preferences and component selectivity not observed in the solution reactions of competing monomers.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"276 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135474952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stretchable hybrid platform‐enabled interactive perception of strain sensing and visualization 可拉伸混合平台-实现应变传感和可视化的交互式感知
SmartMat Pub Date : 2023-10-11 DOI: 10.1002/smm2.1247
Yikun Liu, Yongju Gao, Beom Jin Kim, Meili Xia, Yunlong Zhou, Yongjing Zhang, Yang Li, Jianying Huang, Duxia Cao, Songfang Zhao, Jong‐Hyun Ahn, Yuekun Lai
{"title":"Stretchable hybrid platform‐enabled interactive perception of strain sensing and visualization","authors":"Yikun Liu, Yongju Gao, Beom Jin Kim, Meili Xia, Yunlong Zhou, Yongjing Zhang, Yang Li, Jianying Huang, Duxia Cao, Songfang Zhao, Jong‐Hyun Ahn, Yuekun Lai","doi":"10.1002/smm2.1247","DOIUrl":"https://doi.org/10.1002/smm2.1247","url":null,"abstract":"Abstract Human–machine interactive platforms that can sense mechanical stimuli visually and digitally are highly desirable. However, most existing interactive devices cannot satisfy the demands of tactile feedback and extended integration. Inspired by the mechanoluminescence (ML) function of cephalopod skin and the sensitive perception of microcracked slit‐organs, a bioinspired stretchable interactive platform is developed by designing a stretchable poly(styrene‐block‐butadiene‐block‐styrene)/fluorescent molecule (SFM) composite followed by the in situ polymerization of pyrrole (Py) and deposition of carbon nanotubes (CNTs), which possesses a simple multilayered structure and quantitatively senses the applied strains via the variations of digital electrical resistance and visual fluorescence intensity. Using the strain‐dependent microstructures derived from the synergistic interactions of the rigid PPy/CNTs functional layer and SFM, the SFM/PPy/CNTs‐based platforms exhibit excellent strain‐sensing performance manifested by a high gauge factor (GF = 2.64 × 10 4 ), wide sensing range (~270%), fast response/recovery time (~155/195 ms), excellent stability (~15,000 cycles at 40% strain), and sensitive ML characteristics under ultraviolet illumination. Benefiting from the novel fusion of digital data and visual images, important applications, including the detection of wrist pulses and human motions, and information dual‐encryption, are demonstrated. This study demonstrates the superiority of advanced structures and materials for realizing superior applications in wearable electronics.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136212556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NIR‐II cyanine@albumin fluorophore for deep tissue imaging and imaging‐guided surgery NIR‐II cyanine@albumin用于深部组织成像和成像引导手术的荧光团
SmartMat Pub Date : 2023-10-03 DOI: 10.1002/smm2.1245
Yuewei Zhang, Yunlong Jia, Shoujun Zhu
{"title":"NIR‐II cyanine@albumin fluorophore for deep tissue imaging and imaging‐guided surgery","authors":"Yuewei Zhang, Yunlong Jia, Shoujun Zhu","doi":"10.1002/smm2.1245","DOIUrl":"https://doi.org/10.1002/smm2.1245","url":null,"abstract":"Abstract The near‐infrared (NIR)‐II bioimaging technique is highly important for both diagnosing and treating life‐threatening diseases due to its exceptional imaging capabilities. However, the lack of suitable NIR‐II fluorescent probes has hindered their widespread clinical application. To address this issue, the binding of albumin to cyanine dyes has emerged as a practical and efficient method for developing high‐performance NIR‐II probes. Cyanine dyes can bind with exogenous and endogenous albumin through either covalent or noncovalent interactions, serving various purposes. The resulting cyanine@albumin (or albumin@cyanine) fluorophores offer significant advantages, including strong brightness, excellent photostability, good biosafety, and a long‐term, high‐resolution imaging window. Cyanine dye in situ binding with endogenous albumin can also enhance the targeting imaging capability. This review provides a summary of the interaction mechanism, performance enhancement, tumor‐targeting feature, and in vivo imaging applications of the cyanine@albumin fluorophores. These advancements not only highlight the unique characteristics of cyanine@albumin fluorophores in preclinical research but also emphasize their potential for clinical diagnosis.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135743626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Outside Back Cover: Volume 4 Issue 5 外封底:第4卷第5期
SmartMat Pub Date : 2023-10-01 DOI: 10.1002/smm2.1250
Haining Fan, Wenbin Luo, Shixue Dou, Zijian Zheng
{"title":"Outside Back Cover: Volume 4 Issue 5","authors":"Haining Fan, Wenbin Luo, Shixue Dou, Zijian Zheng","doi":"10.1002/smm2.1250","DOIUrl":"https://doi.org/10.1002/smm2.1250","url":null,"abstract":"Outside back cover image: Metal sulfur battery, which allows for storing electrical energy at low cost, is highly appealing to the long-term needs of future society. While being able to succeed in real application, some stiff hurdles derived from complicated conversion reactions in cell operation need to be overcome. Over the past, burgeoning concerns have focused on smart cathode design to delicately tailor the physiochemical interactions between the sulfur hosts and polysulfides. We summarize the recent key progress made in two-dimensional host materials, with deep mechanism exploration of enhanced polysulfide adsorption as well as accelerated conversion rate. This review will provide prospective fundamental guidance for the future sulfur host design and beyond. (DOI: https://doi.org/10.1002/smm2.1186)","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Front Cover: Volume 4 Issue 5 外封面:第4卷第5期
SmartMat Pub Date : 2023-10-01 DOI: 10.1002/smm2.1249
Jinzhou Fu, Hanwei Wang, Zhichen Du, Yao Liu, Qingfeng Sun, Huiqiao Li
{"title":"Outside Front Cover: Volume 4 Issue 5","authors":"Jinzhou Fu, Hanwei Wang, Zhichen Du, Yao Liu, Qingfeng Sun, Huiqiao Li","doi":"10.1002/smm2.1249","DOIUrl":"https://doi.org/10.1002/smm2.1249","url":null,"abstract":"Outside front cover image: The safety issues of lithium-ion batteries have received attention because they use flammable organic electrolytes and the separator with poor thermal stability. Herein, we design a green, cellulose-based separator in a unique encapsulation structure, in which functional flame retardants are wrapped in microscrolls formed by the self-rolling of cellulose nanosheets upon freeze-drying. The obtained separator shows excellent flame retardancy, and it was quickly extinguished after burning for only 0.67 s in combustion experiment through a radical scavenging mechanism. (DOI: https://doi.org/10.1002/smm2.1182)","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy‐efficient organic photoelectric synaptic transistors with environment‐friendly CuInSe2 quantum dots for broadband neuromorphic computing 节能有机光电突触晶体管与环境友好的CuInSe2量子点用于宽带神经形态计算
SmartMat Pub Date : 2023-09-28 DOI: 10.1002/smm2.1246
Junyao Zhang, Ziyi Guo, Tongrui Sun, Pu Guo, Xu Liu, Huaiyu Gao, Shilei Dai, Lize Xiong, Jia Huang
{"title":"Energy‐efficient organic photoelectric synaptic transistors with environment‐friendly CuInSe<sub>2</sub> quantum dots for broadband neuromorphic computing","authors":"Junyao Zhang, Ziyi Guo, Tongrui Sun, Pu Guo, Xu Liu, Huaiyu Gao, Shilei Dai, Lize Xiong, Jia Huang","doi":"10.1002/smm2.1246","DOIUrl":"https://doi.org/10.1002/smm2.1246","url":null,"abstract":"Abstract Photoelectric synaptic device is a promising candidate component in brain‐inspired high‐efficiency neuromorphic computing systems. Implementing neuromorphic computing with broad bandwidth is, however, challenging owing to the difficulty in realizing broadband characteristics with available photoelectric synaptic devices. Herein, taking advantage of the type‐II heterostructure formed between environmentally friendly CuInSe 2 quantum dots and organic semiconductor, broadband photoelectric synaptic transistors (BPSTs) that can convert light signals ranging from ultraviolet (UV) to near‐infrared (NIR) into post‐synaptic currents are demonstrated. Essential synaptic functions, such as pair‐pulse facilitation, the modulation of memory level, long‐term potentiation/depression transition, dynamic filtering, and learning‐experience behavior, are well emulated. More significantly, benefitting from broadband responses, information processing functions, including arithmetic computing and pattern recognition can also be simulated in a broadband spectral range from UV to NIR. Furthermore, the BPSTs exhibit obvious synaptic responses even at an ultralow operating voltage of −0.1 mV with an ultralow energy consumption of 75 aJ per event, and show their potential in flexible electronics. This study presents a pathway toward the future construction of brain‐inspired neural networks for high‐bandwidth neuromorphic computing utilizing energy‐efficient broadband photoelectric devices.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135343810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
3D printing of customized functional devices for smart biomedical systems 智能生物医学系统定制功能设备的3D打印
SmartMat Pub Date : 2023-09-20 DOI: 10.1002/smm2.1244
Hao Yang, Haiqiu Fang, Chongze Wang, Yanjiao Wang, Chao Qi, Yunlong Zhang, Qiang Zhou, Mengxin Huang, Min Wang, Mingbo Wu
{"title":"3D printing of customized functional devices for smart biomedical systems","authors":"Hao Yang, Haiqiu Fang, Chongze Wang, Yanjiao Wang, Chao Qi, Yunlong Zhang, Qiang Zhou, Mengxin Huang, Min Wang, Mingbo Wu","doi":"10.1002/smm2.1244","DOIUrl":"https://doi.org/10.1002/smm2.1244","url":null,"abstract":"Abstract The escalating demands for smart biomedical systems ignite a significantly growing influence of three‐dimensional (3D) printing technology. Recognized as a revolutionary and potent fabrication tool, 3D printing possesses unparalleled capabilities for generating customized functional devices boasting intricate and meticulously controlled architectures while enabling the integration of multiple functional materials. These distinctive advantages arouse a growing inclination toward customization and miniaturization, thereby facilitating the development of cutting‐edge biomedical systems. In this comprehensive review, the prevalent 3D printing technologies employed in biomedical applications are presented. Moreover, focused attention is paid to the latest advancements in harnessing 3D printing to fabricate smart biomedical systems, with specific emphasis on exemplary ongoing research encompassing biomedical examination systems, biomedical treatment systems, as well as veterinary medicine. In addition to illuminating the promising potential inherent in 3D printing for this rapidly evolving field, the prevailing challenges impeding its further progression are also discussed. By shedding light on recent achievements and persisting obstacles, this review aims to inspire future breakthroughs in the realm of smart biomedical systems.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Activating MoO3 nanobelts via aqueous intercalation as a near‐infrared type I photosensitizer for photodynamic periodontitis treatment 通过水插层激活MoO3纳米带作为近红外I型光敏剂用于光动力牙周炎治疗
SmartMat Pub Date : 2023-09-13 DOI: 10.1002/smm2.1243
Bohua Li, Dandan Chu, Haohao Cui, Zhanrong Li, Zhan Zhou, Chaoliang Tan, Jingguo Li
{"title":"Activating MoO<sub>3</sub> nanobelts via aqueous intercalation as a near‐infrared type I photosensitizer for photodynamic periodontitis treatment","authors":"Bohua Li, Dandan Chu, Haohao Cui, Zhanrong Li, Zhan Zhou, Chaoliang Tan, Jingguo Li","doi":"10.1002/smm2.1243","DOIUrl":"https://doi.org/10.1002/smm2.1243","url":null,"abstract":"Abstract Although molybdenum trioxide nanomaterials have been widely explored as nanoagents for biomedical applications against bacteria through photothermal therapy, chemodynamic therapy, and catalytic therapy, their utilization as photosensitizers for photodynamic therapy (PDT) have been rarely reported so far. Herein, we report the activation of MoO 3 nanobelts via aqueous co‐intercalation of Na + and H 2 O into their van der Waals gaps as a near‐infrared Type I photosensitizer for photodynamic periodontitis treatment. The Na + /H 2 O intercalation of MoO 3 nanobelts can shorten its length, generate rich oxygen vacancies, and enlarge its interlayer gaps. Such structural changes thus can induce the color change from white to dark blue with a strong near‐infrared (NIR) absorption. When used as a photosensitizer, the I‐MoO 3− x nanobelts exhibit much higher activities for the generation of superoxide radical (·O 2 − ) under an 808 nm laser irradiation than that of the pristine MoO 3 nanobelts. Therefore, the prepared I‐MoO 3− x nanobelts show a spectral antibacterial activity against Escherichia coli and Saccharomyces aureus , thus yielding a good clinical therapeutic effect on periodontitis. Our study proves that aqueous intercalation can be a simple but powerful strategy to activate layered MoO 3 nanomaterials for high‐performance PDT.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134990579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Transition metal carbide‐based photocatalysts for artificial photosynthesis 人工光合作用的过渡金属碳化物基光催化剂
SmartMat Pub Date : 2023-08-10 DOI: 10.1002/smm2.1238
K. J. Wong, J. J. Foo, T. J. Siang, Wee‐Jun Ong
{"title":"Transition metal carbide‐based photocatalysts for artificial photosynthesis","authors":"K. J. Wong, J. J. Foo, T. J. Siang, Wee‐Jun Ong","doi":"10.1002/smm2.1238","DOIUrl":"https://doi.org/10.1002/smm2.1238","url":null,"abstract":"Transition metal carbides, including both MXene and non‐MXene metal carbides, have enjoyed a soaring reputation in recent years. Benefitting from their intriguing physical and chemical characteristics, they shine in multifarious research fields and currently, they have emerged as promising nanomaterials for photocatalysis in energy and environmental science. Herein, based on the recent theoretical research and experimental studies, a systematic and comprehensive review of the expeditious advances of metal carbides and their nano‐architectures in the flourishing arena of photocatalysis is presented. The fundamental mechanism involved in photocatalysis with metal carbides serving as semiconductors or cocatalysts is thoroughly discussed. Besides, we highlight the main synthetic strategies of MXene and non‐MXene metal carbides and unravel the structural properties of the as‐obtained metal carbides via different fabrication routes to establish and elucidate their intriguing role in ameliorating photocatalytic activity. Moreover, the state‐of‐the‐art advancements of metal carbides in diverse photocatalytic applications, including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, and carbon dioxide reduction reaction, are summarized. In particular, insights into the structure–activity relationship of metal carbide in photocatalysis are elucidated. Finally, this review concludes with the ongoing challenges and perspectives on the future directions of metal carbides in the realm of photocatalysis.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"326 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77787425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信