Scientometrics最新文献

筛选
英文 中文
Exploring the formation mechanism of new energy vehicle industry-university-research innovation network: the role of structural, cognitive and relational social capital 探索新能源汽车产学研创新网络的形成机制:结构资本、认知资本和关系社会资本的作用
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-27 DOI: 10.1007/s11192-024-05050-y
Xia Cao, Xin Zhang, ZeYu Xing
{"title":"Exploring the formation mechanism of new energy vehicle industry-university-research innovation network: the role of structural, cognitive and relational social capital","authors":"Xia Cao, Xin Zhang, ZeYu Xing","doi":"10.1007/s11192-024-05050-y","DOIUrl":"https://doi.org/10.1007/s11192-024-05050-y","url":null,"abstract":"<p>The purpose of this paper is to consider the joint action of structural, cognitive and relational social capital, and to explore the formation mechanism of the innovation network of new energy vehicles (NEV). The research data come from China's NEV cooperative invention patent applications from 2001 to 2019. This paper uses the exponential random graph model (ERGM) to study the impact of different dimensions of social capital on the NEV industry-university-research (I-U-R) innovation network. The results show that from the perspective of structural capital, the closed network structure has a positive impact on the formation of NEV I-U-R innovation network. From the perspective of cognitive capital, the homogeneity of knowledge base has a positive effect on the formation of the NEV I-U-R innovation network, and the innovation subjects with the same knowledge base breadth and the same knowledge base depth are more inclined to form a cooperative relationship. For relational capital, institutional environment similarity and organizational structure similarity are important factors affecting the formation of NEV I-U-R innovation network to a similar extent. The findings of this study provide scientific references for promoting the sustainable development of I-U-R innovation network in NEV industry.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"133 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Divergent” cross-domain stretching for technology fusion: validating the knowledge partition search model using patent data 技术融合的 "发散式 "跨领域延伸:利用专利数据验证知识分区搜索模型
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-27 DOI: 10.1007/s11192-024-05049-5
Jie Liu
{"title":"“Divergent” cross-domain stretching for technology fusion: validating the knowledge partition search model using patent data","authors":"Jie Liu","doi":"10.1007/s11192-024-05049-5","DOIUrl":"https://doi.org/10.1007/s11192-024-05049-5","url":null,"abstract":"<p>Technology fusion refers to the phenomenon in which distinct technology domains overlap. Despite its importance in technology innovation and evolution, few studies have explored the general pattern of the cross-domain search process leading to technology fusion. This paper proposes that the stretching between distinct technology domains could be viewed as searching in a two-dimensional knowledge partition landscape and then empirically validates the model based on a large patent dataset derived from the U.S. Patent and Trade Office (USPTO). The findings show that the general pattern of the search processes leading to technology fusion could be viewed as searching across a broad technology scope to identify limited valuable linking points within existing technology domains, and the search processes are mainly “divergent”; that is, innovative agents gradually extend the search scope to pursue new hybrid technologies. However, the cross-domain search would be more targeted if the two technology domains were closer to each other. In addition, compared to searching across a broader technology scope, digging in certain technology areas is more important for the generation of new high-impact hybrid technologies. This study provides a novel perspective for understanding the new knowledge creation process and technology fusion.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"130 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metapath and attribute-based academic collaborator recommendation in heterogeneous academic networks 异构学术网络中基于元路径和属性的学术合作者推荐
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-27 DOI: 10.1007/s11192-024-05043-x
Hui Li, Yaohua Hu
{"title":"Metapath and attribute-based academic collaborator recommendation in heterogeneous academic networks","authors":"Hui Li, Yaohua Hu","doi":"10.1007/s11192-024-05043-x","DOIUrl":"https://doi.org/10.1007/s11192-024-05043-x","url":null,"abstract":"<p>Academic collaboration is fundamental to the advancement of scientific research. However, with the growing number of publications and researchers, it becomes increasingly challenging to identify suitable collaborators. Academic collaborator recommendation is a promising solution to this problem. Traditional recommendation methods based on collaborative filtering suffer serious data sparsity. In recent years, network topology-based methods have shown good recommendation performance while alleviating the data sparsity issue to some extent by exploiting the relationships between nodes and their attributes. Nevertheless, these methods are typically based on homogeneous collaboration networks that consist only of scholar nodes and collaboration relationships, leading to suboptimal performance. In reality, collaboration involves many different types of nodes and relations that accumulate multiplex information. To address this issue, we construct a heterogeneous academic information network comprising four types of nodes: scholars, papers, organizations, and publication venues. An academic collaborator recommendation model is designed to capture multi-type attribute features and network topology features of nodes through metapaths based on the network. Specifically, the attribute features of nodes are embedded by a node type-aware embedding method. The topology features are then extracted through the node type-aware aggregation and metapath instance aggregation procedure. After that, we utilize a metapath aggregation method to gather different types of metapaths, each representing a factor that affects collaboration. Thus, the topology information and attribute information are preserved, while encompassing multi-type factors of collaboration. Finally, we compute the vector similarity to determine collaborators. Through rigorous experimentation on a large-scale interdisciplinary academic dataset, we found that the proposed model exhibits outstanding performance in practical applications. Unlike traditional approaches confined to homogeneous collaboration networks, our model delves deeper by mining and leveraging diverse node attributes and multiple collaboration influencing factors. This approach significantly enhances the accuracy and effectiveness of collaborator recommendations. Ultimately, we aspire to contribute to a more efficient and accessible platform that simplifies the search for suitable collaborators.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network 应用于中国绿色专利引文网络的排名算法的无偏评价
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-18 DOI: 10.1007/s11192-024-05023-1
Xipeng Liu, Xinmiao Li
{"title":"Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network","authors":"Xipeng Liu, Xinmiao Li","doi":"10.1007/s11192-024-05023-1","DOIUrl":"https://doi.org/10.1007/s11192-024-05023-1","url":null,"abstract":"<p>As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"136 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Annotation of scientific uncertainty using linguistic patterns 利用语言模式标注科学不确定性
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-18 DOI: 10.1007/s11192-024-05009-z
Panggih Kusuma Ningrum, Iana Atanassova
{"title":"Annotation of scientific uncertainty using linguistic patterns","authors":"Panggih Kusuma Ningrum, Iana Atanassova","doi":"10.1007/s11192-024-05009-z","DOIUrl":"https://doi.org/10.1007/s11192-024-05009-z","url":null,"abstract":"<p>Scientific uncertainty is an integral part of the research process and inherent to the construction of new knowledge. In this paper, we investigate the ways in which uncertainty is expressed in articles and propose a new interdisciplinary annotation framework to categorize sentences containing uncertainty expressions along five dimensions. We propose a method for the automatic annotation of sentences based on linguistic patterns for identifying the expressions of scientific uncertainty that have been derived from a corpus study. We processed a corpus of 5956 articles from 22 journals in three different discipline groups, which were annotated using our automatic annotation method. We evaluate our annotation method and study the distribution of uncertainty expressions across the different journals and categories. The results show a predominant concentration of the distribution of the scientific uncertainty expressions in the Results and Discussion section (71.4%), followed by 12.5% of expressions in the Background section, and the largest proportion of uncertainty expressions, approximately 70.3%, are formed as author(s) statements. Our research contributes methodological advances and insights into the diverse manifestations of scientific uncertainty across disciplinary domains and provides a basis for ongoing exploration and refinement of the understanding of scientific uncertainty communication.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"16 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dual dimension of scientific research experience acquisition and its development: a 40-year analysis of Chinese Humanities and Social Sciences Journals 科研经验获取及其发展的双重维度:对中国人文社会科学期刊 40 年的分析
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-18 DOI: 10.1007/s11192-024-05002-6
Kun Chen, Xia-xia Gao, Yi-di Huang, Wen-tao Xu, Guo-liang Yang
{"title":"The dual dimension of scientific research experience acquisition and its development: a 40-year analysis of Chinese Humanities and Social Sciences Journals","authors":"Kun Chen, Xia-xia Gao, Yi-di Huang, Wen-tao Xu, Guo-liang Yang","doi":"10.1007/s11192-024-05002-6","DOIUrl":"https://doi.org/10.1007/s11192-024-05002-6","url":null,"abstract":"<p>Scientific experience is crucial for producing high-quality research, and the approach of acquisition can significantly impact its accumulation rate. We present a framework for scientific experience acquisition that outlines the dual dimensions of experience accumulation: self-accumulation and accumulation under senior expert guidance. To validate the framework, we conducted a case study using 2,957,700 papers from all 568 Chinese humanities and social science journals, taking into account the limitations of the international journal system. Our findings reveal that self-accumulation has been gradually declining, decreasing from 57.67% in 1980 to 4.55% in 2020. Conversely, accumulation under senior expert guidance has been steadily increasing, rising from 5.7% in 1980 to 28.69% in 2020. Furthermore, the proportion of the two approaches varies by discipline. Social sciences such as Psychology, Economics, and Management, which rely more on large teams and collaborative research, have a higher proportion of accumulation under senior expert guidance than humanities disciplines like Art, History, and Philosophy, which depend more on individual research. Finally, this research also offers a distinctive exploration of the question posed by the US National Science and Technology Council (2008): how and why do communities of innovation form and evolve.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"50 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting collaborative relationship among scholars by integrating scholars’ content-based and structure-based features 综合学者的内容特征和结构特征预测学者间的合作关系
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-18 DOI: 10.1007/s11192-024-05012-4
Xiuxiu Li, Mingyang Wang, Xu Liu
{"title":"Predicting collaborative relationship among scholars by integrating scholars’ content-based and structure-based features","authors":"Xiuxiu Li, Mingyang Wang, Xu Liu","doi":"10.1007/s11192-024-05012-4","DOIUrl":"https://doi.org/10.1007/s11192-024-05012-4","url":null,"abstract":"<p>Academic collaboration can break through the geographical limitations of scholars and promote academic output among scholars. Academic big data will provide an important data source for more comprehensive and accurate modeling scholars due to the coexistence environment of various academic entities. Based on academic big data, an end-to-end model HCSP was proposed for predicting collaborative relationships among scholars. HCSP models scholars from two aspects: content-based features and structure-based features, and calculate the similarity between scholars based on this to predict whether there will be academic collaboration between scholars. When learning the content-based features of scholars, HCSP utilizes LSTM and multi-head attention mechanism to extract the overall and recent research interests of scholars, to capture the diversity of scholars’ research interests. When learning the structure-based features of scholars, HCSP adopts a subgraph sampling strategy based on meta paths to model the structural features of scholar nodes in heterogeneous academic network. By integrating scholars’ content-based and structure-based features, HCSP calculates the similarity between scholars to determine whether there will be a collaborative relationship between them. The experimental results indicate that the HCSP model achieves better prediction performance compared to the baseline models. It can be seen that integrating scholars’ content-based and structure-based characteristics can indeed provide a richer and more effective modeling basis for predicting their academic collaborative relationships.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"121 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining between-sectors knowledge transfer in the pharmacology field 研究药理学领域的部门间知识转移
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-18 DOI: 10.1007/s11192-024-05040-0
Arida Ferti Syafiandini, Jeeyoung Yoon, Soobin Lee, Chaemin Song, Erjia Yan, Min Song
{"title":"Examining between-sectors knowledge transfer in the pharmacology field","authors":"Arida Ferti Syafiandini, Jeeyoung Yoon, Soobin Lee, Chaemin Song, Erjia Yan, Min Song","doi":"10.1007/s11192-024-05040-0","DOIUrl":"https://doi.org/10.1007/s11192-024-05040-0","url":null,"abstract":"<p>Understanding knowledge transfer patterns is essential in providing valuable insights for shaping innovations and supporting economic growth. Our study identifies the main contributors and patterns of knowledge transfer within the pharmacology field from 2000 to 2019 by analyzing citation linkage and collaborative information between sector categories, affiliated institutions, and biomedical entities in articles from the Web of Science database. Our main contribution is mapping the knowledge transfer flow and identifying the main contributors to knowledge transfer within the pharmacology domain. We manually categorized affiliated institutions into four sector categories to observe knowledge transfer patterns. Subsequently, we performed a citation linkage analysis at three levels: sector categories, institution names, and biomedical entities. The results show that academic institutions are the most significant contributors to knowledge transfer in the pharmacology field, followed by commercial and government institutions. Although the majority of knowledge transfers originated from academic institutions, our study uncovered notable transfers from commercial to academic sectors and from government to academic sectors. Through named entity analysis on diseases, drugs, and genes, we found that research in the pharmacology field predominantly concentrates on subjects pertaining to cancers, chronic diseases, and neurodegenerative disorders.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"38 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experience effects of patent examiners: an empirical study of the career length and citation patterns on triadic patents 专利审查员的经验效应:关于三元专利的职业长度和引用模式的实证研究
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-18 DOI: 10.1007/s11192-024-05037-9
Tetsuo Wada
{"title":"Experience effects of patent examiners: an empirical study of the career length and citation patterns on triadic patents","authors":"Tetsuo Wada","doi":"10.1007/s11192-024-05037-9","DOIUrl":"https://doi.org/10.1007/s11192-024-05037-9","url":null,"abstract":"<p>Does a patent examiner rely more on external sources of information for prior art searches as the examiner becomes more experienced? This question is relevant to the policy debate because studies confirm that the seniority of examiners is associated with higher patent allowance rate in the U.S. However, little is known to date about how examiners’ citation behavior, particularly search behavior, is related to their experience. This paper first describes how examiner experience is related to the rate of patent allowance and repeated use of prior citations by the same examiner. Next, this paper analyzes how examiner experience is related to the extent of receiving spillover at the USPTO and the JPO. This paper uses an empirical methodology to identify examination spillovers from the European Patent Office (EPO) search result to the United States Patent and Trademark Office (USPTO) and also to the Japan Patent Office (JPO) in the sense that patent citations for rejection of a patent application tend to be “adopted” at a later office after the EPO issues search reports. The results show that more experienced examiners exhibit greater convergence of patent citations at the USPTO and at the JPO with the search report outcome at the EPO, although the spillover effect also depends on international patent application routes, such as the Patent Cooperation Treaty (PCT).</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"27 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling perception and resilience factors to data sharing in clinical and basic research: an observational study 模拟临床和基础研究数据共享的感知和适应因素:一项观察研究
IF 3.9 3区 管理学
Scientometrics Pub Date : 2024-05-18 DOI: 10.1007/s11192-024-05015-1
Federica Cugnata, Chiara Brombin, Chiara Maria Poli, Roberto Buccione, Clelia Di Serio
{"title":"Modelling perception and resilience factors to data sharing in clinical and basic research: an observational study","authors":"Federica Cugnata, Chiara Brombin, Chiara Maria Poli, Roberto Buccione, Clelia Di Serio","doi":"10.1007/s11192-024-05015-1","DOIUrl":"https://doi.org/10.1007/s11192-024-05015-1","url":null,"abstract":"<p>Data sharing is a major tenet in the global challenge to improve the reproducibility of scientific findings. Current researcher attitudes toward data sharing and Open Science in general are still far from optimal. The practice of data sharing and how it should be managed remain unclear and inconsistent, with many researchers keen to receive from, but not give back to the community. The lack of a data sharing culture, systemic resistance, misconceptions on data ownership and the unjustified fear of being “scooped”, all concur to create an enormous barrier to the promotion of scientific research based on increased information quality, transparency and openness, and replicability of results. These factors are also compounded by the erroneous perception that the sharing of data compromises competitiveness. Here, we present a rigorous observational study based on 198 researchers in the biomedical areas to evaluate factors affecting perception and natural attitude to data sharing in the biomedical sciences.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"96 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信