Powers of Divergence最新文献

筛选
英文 中文
The Musical Work as a “Manifold” 音乐作品的“歧义”
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.24
{"title":"The Musical Work as a “Manifold”","authors":"","doi":"10.2307/j.ctv4s7jp2.24","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.24","url":null,"abstract":"","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117106864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivative IX: 第九阶导数:
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.25
{"title":"Derivative IX:","authors":"","doi":"10.2307/j.ctv4s7jp2.25","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.25","url":null,"abstract":"","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129614905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Index 指数
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.37
{"title":"Index","authors":"","doi":"10.2307/j.ctv4s7jp2.37","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.37","url":null,"abstract":"","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116781153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Vectors of the Body 身体的载体
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.22
{"title":"The Vectors of the Body","authors":"","doi":"10.2307/j.ctv4s7jp2.22","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.22","url":null,"abstract":"","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125153824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivative VIII: 导数八世:
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.23
{"title":"Derivative VIII:","authors":"","doi":"10.2307/j.ctv4s7jp2.23","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.23","url":null,"abstract":"","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133735270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivative IV: 四:导数
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.14
{"title":"Derivative IV:","authors":"","doi":"10.2307/j.ctv4s7jp2.14","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.14","url":null,"abstract":"","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134522621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivative III: 第三导数:
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.13
{"title":"Derivative III:","authors":"","doi":"10.2307/j.ctv4s7jp2.13","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.13","url":null,"abstract":"","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128750442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Problem of Resemblance 相似的问题
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.7
{"title":"The Problem of Resemblance","authors":"","doi":"10.2307/j.ctv4s7jp2.7","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.7","url":null,"abstract":"","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126527253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivative II: 导数II:
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.10
S. Crane
{"title":"Derivative II:","authors":"S. Crane","doi":"10.2307/j.ctv4s7jp2.10","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.10","url":null,"abstract":"Continuation of About Derivatives, this module will teach properties so one could find the derivative of more complicated functions","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132245341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivative I: 我:导数
Powers of Divergence Pub Date : 2018-07-10 DOI: 10.2307/j.ctv4s7jp2.8
Lemma, Let K = A B B T C
{"title":"Derivative I:","authors":"Lemma, Let K = A B B T C","doi":"10.2307/j.ctv4s7jp2.8","DOIUrl":"https://doi.org/10.2307/j.ctv4s7jp2.8","url":null,"abstract":"Let Λ γ denote the Dirichlet-to-Neumann map for an electrical network with conductivity γ. By way of the Kirchhoff matrix K = (κ ij), consider the space of conductivities to be a subset of R N ×N , where N is the number of vertices, We donote the map from γ to Λ γ by L. In this note we compute the directional derivative D L of L. A direction in this context is represented by a matrix , with arbitrary real entries, which is symmetric and has row sum 0. where is symmetric, has row sum 0, and K is a Kirchhoff matrix. Let K(t) = A + tt A B + tt B B T + tt T B C + tt C , and Λ(t) = A + tt A − (B + tt B)(C + tt C) −1 (B T + tt T B). Then D L = Λ (0) = A − B C −1 B T − BC −1 T B + BC −1 C C −1 B T. Proof. Let C(t) = C + tt C. Notice C(t)(C(t)) −1 = I. By the product rule C (t)C(t) + C(t)(C(t) −1) = 0, hence (C −1) (0) = −C −1 C C −1. Using the product rule again","PeriodicalId":212444,"journal":{"name":"Powers of Divergence","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116985181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信